論文の概要: Multi-Objective CNN Based Algorithm for SAR Despeckling
- arxiv url: http://arxiv.org/abs/2006.09050v4
- Date: Fri, 30 Oct 2020 13:55:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:22:40.328414
- Title: Multi-Objective CNN Based Algorithm for SAR Despeckling
- Title(参考訳): SAR復号化のための多目的CNNアルゴリズム
- Authors: Sergio Vitale, Giampaolo Ferraioli and Vito Pascazio
- Abstract要約: 本稿では,SAR画像特性を考慮した多目的コスト関数を持つ畳み込みニューラルネットワーク(CNN)を提案する。
シミュレーションおよび実写SAR画像を用いた実験により,提案手法の精度が,Stand-of-Art despecklingアルゴリズムと比較された。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) in remote sensing has nowadays become an effective
operative tool: it is largely used in applications such as change detection,
image restoration, segmentation, detection and classification. With reference
to synthetic aperture radar (SAR) domain the application of DL techniques is
not straightforward due to non trivial interpretation of SAR images, specially
caused by the presence of speckle. Several deep learning solutions for SAR
despeckling have been proposed in the last few years. Most of these solutions
focus on the definition of different network architectures with similar cost
functions not involving SAR image properties. In this paper, a convolutional
neural network (CNN) with a multi-objective cost function taking care of
spatial and statistical properties of the SAR image is proposed. This is
achieved by the definition of a peculiar loss function obtained by the weighted
combination of three different terms. Each of this term is dedicated mainly to
one of the following SAR image characteristics: spatial details, speckle
statistical properties and strong scatterers identification. Their combination
allows to balance these effects. Moreover, a specifically designed architecture
is proposed for effectively extract distinctive features within the considered
framework. Experiments on simulated and real SAR images show the accuracy of
the proposed method compared to the State-of-Art despeckling algorithms, both
from quantitative and qualitative point of view. The importance of considering
such SAR properties in the cost function is crucial for a correct noise
rejection and details preservation in different underlined scenarios, such as
homogeneous, heterogeneous and extremely heterogeneous.
- Abstract(参考訳): 遠隔センシングにおける深層学習(DL)は, 変化検出, 画像復元, セグメンテーション, 検出, 分類などの応用に広く利用されている。
合成開口レーダ(SAR)領域については,SAR画像の非自明な解釈,特にスペックルの存在に起因するため,DL技術の適用は容易ではない。
SARの切り離しのためのいくつかのディープラーニングソリューションが、ここ数年で提案されている。
これらのソリューションのほとんどは、SAR画像プロパティを含まない同様のコスト関数を持つ異なるネットワークアーキテクチャの定義に焦点を当てている。
本稿では,SAR画像の空間的および統計的特性を考慮した多目的コスト関数を持つ畳み込みニューラルネットワーク(CNN)を提案する。
これは、3つの異なる項の重み付け結合によって得られる特異な損失関数の定義によって達成される。
この用語は、主に、空間的詳細、スペックル統計特性、強い散乱体識別という、以下のSAR画像の特徴の1つである。
これらの組み合わせはこれらの効果のバランスをとることができる。
さらに,フレームワーク内の特徴を効果的に抽出する特化設計アーキテクチャを提案する。
シミュレーションおよび実sar画像を用いた実験は, 定量的および質的観点から, 最先端のデスペックリングアルゴリズムと比較し, 提案手法の精度を示した。
コスト関数におけるそのようなSAR特性を考慮することの重要性は、均一性、不均一性、および極めて不均一性などの異なる下線シナリオにおいて、正しいノイズ拒絶と詳細保存のために重要である。
関連論文リスト
- Adaptive Residual Transformation for Enhanced Feature-Based OOD Detection in SAR Imagery [5.63530048112308]
実際の戦場シナリオにおける未知の標的の存在は避けられない。
この問題に対処するために、様々な機能ベースのアウト・オブ・ディストリビューションアプローチが開発されている。
我々は,特徴量に基づくOOD検出をクラス局所化された特徴量に基づくアプローチに変換することを提案する。
論文 参考訳(メタデータ) (2024-11-01T00:09:02Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
論文 参考訳(メタデータ) (2024-05-11T16:06:16Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Textural-Structural Joint Learning for No-Reference Super-Resolution
Image Quality Assessment [59.91741119995321]
我々は、TSNetと呼ばれる品質予測のためのテキスト情報と構造情報を共同で探索するデュアルストリームネットワークを開発した。
画像の重要な領域に注意を払っている人間の視覚システム(HVS)を模倣することにより、視覚に敏感な領域をより区別しやすくするための空間的注意機構を開発する。
実験の結果,提案したTSNetは現状のIQA法よりも視覚的品質を正確に予測し,人間の視点との整合性を示した。
論文 参考訳(メタデータ) (2022-05-27T09:20:06Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - A Feature Fusion-Net Using Deep Spatial Context Encoder and
Nonstationary Joint Statistical Model for High Resolution SAR Image
Classification [10.152675581771113]
HR SAR画像に対して, エンドツーエンドの教師付き分類法を提案する。
より効果的な空間特徴を抽出するために,新しい深部空間コンテキストエンコーダネットワーク(DSCEN)を提案する。
統計の多様性を高めるため、非定常連成統計モデル(NS-JSM)が採用され、グローバルな統計特性を形成する。
論文 参考訳(メタデータ) (2021-05-11T06:20:14Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。