論文の概要: Consistent Recalibration Models and Deep Calibration
- arxiv url: http://arxiv.org/abs/2006.09455v3
- Date: Thu, 1 Jul 2021 15:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:24:15.503891
- Title: Consistent Recalibration Models and Deep Calibration
- Title(参考訳): 一貫した校正モデルと深部校正
- Authors: Matteo Gambara and Josef Teichmann
- Abstract要約: Consistent Recalibration Model (CRC) はデリバティブ価格の項構造の動的特徴を捉えるために導入された。
CRCモデルは、主に複雑なドリフト項や一貫性条件の存在によって、数値的な難易度に悩まされた。
ニューラルネットワーク型の関数に決定的なドリフト項の情報を格納できる機械学習技術により、この問題を克服する。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consistent Recalibration models (CRC) have been introduced to capture in
necessary generality the dynamic features of term structures of derivatives'
prices. Several approaches have been suggested to tackle this problem, but all
of them, including CRC models, suffered from numerical intractabilities mainly
due to the presence of complicated drift terms or consistency conditions. We
overcome this problem by machine learning techniques, which allow to store the
crucial drift term's information in neural network type functions. This yields
first time dynamic term structure models which can be efficiently simulated.
- Abstract(参考訳): Consistent Recalibration Model (CRC) は、デリバティブの価格の項構造の動的な特徴を、必要な一般性を捉えるために導入された。
この問題に対処するためのいくつかのアプローチが提案されているが、CRCモデルを含むこれらすべては、主に複雑なドリフト項や一貫性条件の存在によって、数値的な難しさに悩まされている。
この問題を、ニューラルネットワークの型関数に重要なドリフト項の情報を保存する機械学習技術によって克服した。
これにより、効率よくシミュレートできる最初の動的項構造モデルが得られる。
関連論文リスト
- A model-constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
圧縮可能なオイラー方程式を解くために,モデル制約付き不連続なGalerkin Network (DGNet) アプローチを開発した。
DGNet法の有効性, 安定性, 一般化性を検証するため, 1次元および2次元圧縮可能なオイラー方程式問題に対する数値計算結果を提案する。
論文 参考訳(メタデータ) (2024-09-27T01:13:38Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
縦断データは医療、社会学、地震学など多くの分野で重要である。
実世界のデータセットは高次元であり、構造化された欠陥パターンを含み、測定時間ポイントは未知のプロセスによって管理される。
これらの制限に対処可能な、柔軟で効率的な潜在変数モデルを提案する。
論文 参考訳(メタデータ) (2024-02-08T15:41:48Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
ディープ均衡ネットワーク(Deep equilibrium Network, DEQs)は、単一非線形層の固定点を見つけるために従来の深さを推定する新しいモデルのクラスである。
本稿では、平衡モデルの学習を安定させるために、固定点更新方程式のヤコビアンを明示的に正規化するDECモデルの正規化スキームを提案する。
この正規化は計算コストを最小限に抑え、前方と後方の両方の固定点収束を著しく安定化させ、高次元の現実的な領域に順応することを示した。
論文 参考訳(メタデータ) (2021-06-28T00:14:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
ロボットのモデルベース制御において、正確な前方および逆ダイナミクスモデルの推定が重要な要素である。
本稿では,フォワードモデル学習のためのアーキテクチャと,逆モデル学習のためのアーキテクチャを提案する。
どちらのアーキテクチャも、予測性能の点で、既存のモデル学習フレームワークと分析モデルを大きく上回っている。
論文 参考訳(メタデータ) (2020-10-20T11:28:25Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。