One-Dimensional Lazy Quantum walk in Ternary System
- URL: http://arxiv.org/abs/2006.09712v1
- Date: Wed, 17 Jun 2020 08:12:56 GMT
- Title: One-Dimensional Lazy Quantum walk in Ternary System
- Authors: Amit Saha, Sudhindu Bikash Mandal, Debasri Saha, and Amlan Chakrabarti
- Abstract summary: We present one dimensional three-state quantum walk(lazy quantum walk)
We show its equivalence for circuit realization in ternary quantum logic for the first of its kind.
- Score: 2.6913398550088474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum walks play an important role for developing quantum algorithms and
quantum simulations. Here we present one dimensional three-state quantum
walk(lazy quantum walk) and show its equivalence for circuit realization in
ternary quantum logic for the first of its kind. Using an appropriate logical
mapping of the position space on which a walker evolves onto the multi-qutrit
states, we present efficient quantum circuits considering the nearest neighbour
position space for the implementation of lazy quantum walks in one-dimensional
position space in ternary quantum system. We also address scalability in terms
of $n$-qutrit ternary system with example circuits for a three qutrit state
space.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Discrete-time Quantum Walks in Qudit Systems [3.452050192629253]
We introduce a first of its kind one-dimensional quantum walk in the $d$-dimensional quantum domain.
We show its equivalence for circuit realization in an arbitrary finite-dimensional quantum logic.
arXiv Detail & Related papers (2022-07-09T18:35:47Z) - Steered discrete-time quantum walks for engineering of quantum states [0.0]
We analyze the strengths and limitations of steered discrete time quantum walks in generating quantum states of bipartite quantum systems.
We show that not all quantum states in the composite space are accessible through quantum walks, even under the most generalized definition of a quantum step.
arXiv Detail & Related papers (2022-05-10T13:14:25Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Experimental Demonstration of Efficient High-dimensional Quantum Gates
with Orbital Angular Momentum [4.685726479038803]
We experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93%.
Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.
arXiv Detail & Related papers (2020-10-11T15:20:07Z) - Quantum walks and Dirac cellular automata on a programmable trapped-ion
quantum computer [1.2324860823895265]
We present the circuit-based implementation of a discrete-time quantum walk in position space on a five-qubit trapped-ion quantum processor.
We encode the space of walker positions in particular multi-qubit states and program the system to operate with different quantum walk parameters, experimentally realizing a Dirac cellular automaton with tunable mass parameter.
The quantum walk circuits and position state mapping scale favorably to a larger model and physical systems, allowing the implementation of any algorithm based on discrete-time quantum walks algorithm and the dynamics associated with the discretized version of the Dirac equation.
arXiv Detail & Related papers (2020-02-06T22:24:56Z) - Quantum circuits for the realization of equivalent forms of
one-dimensional discrete-time quantum walks on near-term quantum hardware [1.400804591672331]
Quantum walks are a promising framework for developing quantum algorithms and quantum simulations.
We present different forms of discrete-time quantum walks (DTQWs) and show their equivalence for physical realizations.
arXiv Detail & Related papers (2020-01-30T07:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.