Evaluation of 3D CNN Semantic Mapping for Rover Navigation
- URL: http://arxiv.org/abs/2006.09761v1
- Date: Wed, 17 Jun 2020 10:24:29 GMT
- Title: Evaluation of 3D CNN Semantic Mapping for Rover Navigation
- Authors: Sebastiano Chiodini, Luca Torresin, Marco Pertile, Stefano Debei
- Abstract summary: We present a technique to generate accurate three-dimensional semantic maps for Martian environment.
The algorithm uses as input a stereo image acquired by a camera mounted on a rover.
We evaluate our approach on the ESA Katwijk Beach Planetary Rover dataset.
- Score: 0.6882042556551609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terrain assessment is a key aspect for autonomous exploration rovers,
surrounding environment recognition is required for multiple purposes, such as
optimal trajectory planning and autonomous target identification. In this work
we present a technique to generate accurate three-dimensional semantic maps for
Martian environment. The algorithm uses as input a stereo image acquired by a
camera mounted on a rover. Firstly, images are labeled with DeepLabv3+, which
is an encoder-decoder Convolutional Neural Networl (CNN). Then, the labels
obtained by the semantic segmentation are combined to stereo depth-maps in a
Voxel representation. We evaluate our approach on the ESA Katwijk Beach
Planetary Rover Dataset.
Related papers
- Neural Implicit Dense Semantic SLAM [83.04331351572277]
We propose a novel RGBD vSLAM algorithm that learns a memory-efficient, dense 3D geometry, and semantic segmentation of an indoor scene in an online manner.
Our pipeline combines classical 3D vision-based tracking and loop closing with neural fields-based mapping.
Our proposed algorithm can greatly enhance scene perception and assist with a range of robot control problems.
arXiv Detail & Related papers (2023-04-27T23:03:52Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - Depthformer : Multiscale Vision Transformer For Monocular Depth
Estimation With Local Global Information Fusion [6.491470878214977]
This paper benchmarks various transformer-based models for the depth estimation task on an indoor NYUV2 dataset and an outdoor KITTI dataset.
We propose a novel attention-based architecture, Depthformer for monocular depth estimation.
Our proposed method improves the state-of-the-art by 3.3%, and 3.3% respectively in terms of Root Mean Squared Error (RMSE)
arXiv Detail & Related papers (2022-07-10T20:49:11Z) - Neural RF SLAM for unsupervised positioning and mapping with channel
state information [51.484516640867525]
We present a neural network architecture for jointly learning user locations and environment mapping up to isometry.
The proposed model learns an interpretable latent, i.e., user location, by just enforcing a physics-based decoder.
arXiv Detail & Related papers (2022-03-15T21:32:44Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - H3D: Benchmark on Semantic Segmentation of High-Resolution 3D Point
Clouds and textured Meshes from UAV LiDAR and Multi-View-Stereo [4.263987603222371]
This paper introduces a 3D dataset which is unique in three ways.
It depicts the village of Hessigheim (Germany) henceforth referred to as H3D.
It is designed for promoting research in the field of 3D data analysis on one hand and to evaluate and rank emerging approaches.
arXiv Detail & Related papers (2021-02-10T09:33:48Z) - Ground-aware Monocular 3D Object Detection for Autonomous Driving [6.5702792909006735]
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a challenging task for low-cost urban autonomous driving and mobile robots.
Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation.
We introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning.
arXiv Detail & Related papers (2021-02-01T08:18:24Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
We present an end-to-end 3D reconstruction method for a scene by directly regressing a truncated signed distance function (TSDF) from a set of posed RGB images.
A 2D CNN extracts features from each image independently which are then back-projected and accumulated into a voxel volume.
A 3D CNN refines the accumulated features and predicts the TSDF values.
arXiv Detail & Related papers (2020-03-23T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.