論文の概要: Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
- arxiv url: http://arxiv.org/abs/2006.09914v3
- Date: Fri, 26 Feb 2021 12:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 19:43:00.860478
- Title: Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
- Title(参考訳): 経験的PACベイを用いた確率力学の部分的学習
- Authors: Manuel Haussmann, Sebastian Gerwinn, Andreas Look, Barbara Rakitsch,
Melih Kandemir
- Abstract要約: 本稿では,これらのモデルの予測精度を3段階で向上させる手法を提案する。
実験では、このレシピは、部分的およびノイズの多い事前知識を改良されたモデル適合に効果的に翻訳することを示した。
- 参考スコア(独自算出の注目度): 12.44342023476206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Stochastic Differential Equations model a dynamical environment with
neural nets assigned to their drift and diffusion terms. The high expressive
power of their nonlinearity comes at the expense of instability in the
identification of the large set of free parameters. This paper presents a
recipe to improve the prediction accuracy of such models in three steps: i)
accounting for epistemic uncertainty by assuming probabilistic weights, ii)
incorporation of partial knowledge on the state dynamics, and iii) training the
resultant hybrid model by an objective derived from a PAC-Bayesian
generalization bound. We observe in our experiments that this recipe
effectively translates partial and noisy prior knowledge into an improved model
fit.
- Abstract(参考訳): 神経確率微分方程式は、ドリフトと拡散項にニューラルネットワークを割り当てた力学環境をモデル化する。
非線形性の高表現力は、自由パラメータの大きな集合の同定における不安定さを犠牲にしている。
本稿では,これらのモデルの予測精度を3段階で向上させる手法を提案する。
一 確率的重みを仮定して認識的不確実性を説明すること。
二 状態力学に関する部分的知識の編入、及び
三 結果のハイブリッドモデルをPAC-ベイズ一般化境界から導出した目的により訓練すること。
実験では、このレシピは、部分的およびノイズの多い事前知識を改良されたモデル適合に効果的に翻訳する。
関連論文リスト
- Principled model selection for stochastic dynamics [0.0]
PASTISは、確率推定統計と極値理論を組み合わせて超流動パラメータを抑圧する原理的手法である。
サンプリング率や測定誤差が低い場合でも、最小限のモデルを確実に識別する。
これは偏微分方程式に適用され、生態ネットワークや反応拡散力学にも適用される。
論文 参考訳(メタデータ) (2025-01-17T18:23:16Z) - A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading [0.0]
ジオエンジニアリングにおいて、モデルは様々な負荷条件下での土壌の挙動を記述する上で重要な役割を担っている。
データ駆動型ディープラーニング(DL)モデルは、予測モデルを開発するための有望な代替手段を提供する。
予測が主眼となる場合、訓練されたDLモデルの予測不確実性を定量化することは、情報的意思決定に不可欠である。
論文 参考訳(メタデータ) (2025-01-17T10:15:03Z) - Improving the Noise Estimation of Latent Neural Stochastic Differential Equations [4.64982780843177]
SDE(Latent Neural differential equations)は、最近時系列データから生成モデルを学習するための有望なアプローチとして登場した。
本稿では, この過小評価を詳細に検討し, 損失関数に付加的な雑音正規化を加えることで, 簡単な解法を提案する。
我々はデータの拡散成分を正確に捉えるモデルを学ぶことができる。
論文 参考訳(メタデータ) (2024-12-23T11:56:35Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Training Dynamics of Nonlinear Contrastive Learning Model in the High Dimensional Limit [1.7597525104451157]
モデル重みの実験的分布は、マッキーン・ブラソフ非線形偏微分方程式(PDE)によって支配される決定論的尺度に収束する
L2正則化の下で、このPDEは低次元常微分方程式(ODE)の閉集合に還元する。
ODEの固定点位置とその安定性を解析し,いくつかの興味深い結果を示した。
論文 参考訳(メタデータ) (2024-06-11T03:07:41Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。