Probability Theory with Superposition Events: A Classical Generalization
in the Direction of Quantum Mechanics
- URL: http://arxiv.org/abs/2006.09918v1
- Date: Wed, 17 Jun 2020 14:58:08 GMT
- Title: Probability Theory with Superposition Events: A Classical Generalization
in the Direction of Quantum Mechanics
- Authors: David Ellerman
- Abstract summary: In finite probability theory, events are subsets of the outcome set.
Probabilities are introduced for classical events, superposition events, and their mixtures.
The transformation of the density matrices induced by the experiments or measurements' is the Luders mixture operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In finite probability theory, events are subsets of the outcome set. Subsets
can be represented by 1-dimensional column vectors. By extending the
representation of events to two dimensional matrices, we can introduce
"superposition events." Probabilities are introduced for classical events,
superposition events, and their mixtures by using density matrices. Then
probabilities for experiments or `measurements' of all these events can be
determined in a manner exactly like in quantum mechanics (QM) using density
matrices. Moreover the transformation of the density matrices induced by the
experiments or `measurements' is the Luders mixture operation as in QM. And
finally by moving the machinery into the n-dimensional vector space over Z_2,
different basis sets become different outcome sets. That `non-commutative'
extension of finite probability theory yields the pedagogical model of quantum
mechanics over Z_2 that can model many characteristic non-classical results of
QM.
Related papers
- On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - A quantum expectation identity: Applications to statistical mechanics [0.0]
We derive a useful expectation identity using the language of quantum statistical mechanics.
This identity allows to establish relations between different quantum observables depending on a continuous parameter.
arXiv Detail & Related papers (2024-03-14T20:41:54Z) - Stochastic bra-ket interpretation of quantum mechanics [0.0]
We show that entanglement effects do not originate from superpositions of wave functions, but result from the bilinear structure of density matrices.
Quantum interference appears as a multiplicative phenomenon rather than an additive superposition mechanism.
arXiv Detail & Related papers (2023-09-06T16:48:51Z) - Discrete dynamics in the set of quantum measurements [0.0]
A quantum measurement, often referred to as positive operator-valued measurement (POVM), is a set of positive operators $P_i=P_idaggeq 0$ summing to identity.
We analyze dynamics induced by blockwise bistochastic matrices, in which both columns and rows sum to the identity.
arXiv Detail & Related papers (2023-08-10T19:34:04Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Learning with Density Matrices and Random Features [44.98964870180375]
A density matrix describes the statistical state of a quantum system.
It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems.
This paper explores how density matrices can be used as a building block for machine learning models.
arXiv Detail & Related papers (2021-02-08T17:54:59Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.