Probabilistic Unitary Formulation of Open Quantum System Dynamics
- URL: http://arxiv.org/abs/2307.05776v2
- Date: Thu, 12 Dec 2024 21:08:48 GMT
- Title: Probabilistic Unitary Formulation of Open Quantum System Dynamics
- Authors: Le Hu, Andrew N. Jordan,
- Abstract summary: We show that all non-relativistic quantum processes, whether open or closed, are unitary or probabilistic unitary.
For open quantum systems, its continuous dynamics can always be described by the Lindblad master equation with all jump operators being unitary.
This formalism is shown to be exact under all cases, and does not rely on any assumptions other than the continuity and differentiability of the density matrix.
- Score: 1.8416014644193066
- License:
- Abstract: We show that all non-relativistic quantum processes, whether open or closed, are either unitary or probabilistic unitary, i.e., probabilistic combination of unitary evolutions. This means that for open quantum systems, its continuous dynamics can always be described by the Lindblad master equation with all jump operators being unitary. We call this formalism the probabilistic unitary formulation of open quantum system dynamics. This formalism is shown to be exact under all cases, and does not rely on any assumptions other than the continuity and differentiability of the density matrix. Moreover, it requires as few as $d-1$ jump operators, instead of $d^2-1$, to describe the open dynamics in the most general case, where $d$ is the dimension of Hilbert space of the system. Importantly, different from the conventional Lindblad master equation, this formalism is state-dependent, meaning that the Hamiltonian, jump operators, and rates, in general all depend on the current state of the density matrix. Hence one needs to know the explicit expression of the density matrix in order to write down the probabilistic unitary master equation explicitly. Experimentally, the formalism provides a scheme to control a quantum state to evolve along designed non-unitary quantum trajectories, and can be potentially useful in quantum computing and quantum control scenes since only unitary resources are needed for implementation.
Related papers
- The probabilistic world II : Quantum mechanics from classical statistics [0.0]
A simple neuromorphic computer based on neurons in an active or quiet state within a probabilistic environment can learn the unitary transformations of an entangled two-qubit system.
Our explicit constructions constitute a proof that no-go theorems for the embedding of quantum mechanics in classical statistics are circumvented.
arXiv Detail & Related papers (2024-08-09T14:02:55Z) - Internal causality breaking and emergence of entanglement in the quantum realm [1.1970409518725493]
We investigate the quantum dynamics of two photonic modes coupled to each other through a beam splitting.
We find that when the initial wave function of one mode is different from a wave packet obeying the minimum Heisenberg uncertainty, the causality in the time-evolution of each mode is internally broken.
arXiv Detail & Related papers (2024-03-14T13:16:00Z) - Signs of the rates in the Lindblad master equations can always be
arbitrarily determined [2.1756081703276]
We show that textitany finite-dimensional open quantum system dynamics can be described by a quantum master equation in the Lindblad form with all rates nonnegative for all time.
Our findings raise serious questions on the current criterion in determining Markovianity and non-Markovianity in open quantum system dynamics.
arXiv Detail & Related papers (2023-10-27T04:06:50Z) - Dilation theorem via Schr\"odingerisation, with applications to the
quantum simulation of differential equations [29.171574903651283]
Nagy's unitary dilation theorem in operator theory asserts the possibility of dilating a contraction into a unitary operator.
In this study, we demonstrate the viability of the recently devised Schr"odingerisation approach.
arXiv Detail & Related papers (2023-09-28T08:55:43Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Quasiprobability fluctuation theorem behind the spread of quantum information [10.640597124563614]
We theoretically uncover the quantum fluctuation theorem behind the informational inequality.
The fluctuation theorem quantitatively predicts the statistics of the underlying quantum process.
We experimentally apply an interference-based method to measure the amplitudes composing the quasiprobability.
arXiv Detail & Related papers (2022-01-02T17:45:50Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - The probabilistic world [0.0]
We show that cellular automata are quantum systems in a formulation with discrete time steps and real wave functions.
The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable.
arXiv Detail & Related papers (2020-11-04T14:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.