論文の概要: Mixture of Conditional Gaussian Graphical Models for unlabelled
heterogeneous populations in the presence of co-factors
- arxiv url: http://arxiv.org/abs/2006.11094v4
- Date: Tue, 8 Mar 2022 10:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 05:18:38.877834
- Title: Mixture of Conditional Gaussian Graphical Models for unlabelled
heterogeneous populations in the presence of co-factors
- Title(参考訳): 共因子の存在下での不均質集団に対する条件付きガウス図形モデルの混合
- Authors: Thomas Lartigue (ARAMIS, CMAP), Stanley Durrleman (ARAMIS),
St\'ephanie Allassonni\`ere (CRC (UMR\_S\_1138 / U1138))
- Abstract要約: ガウス図形モデル(GGM)内の条件相関ネットワークは、ランダムベクトルの成分間の直接相互作用を記述するために広く使われている。
本稿では,データポイントをサブポピュレーション対応クラスタに再分類するために,共機能の不均一な効果を減じる条件付きGGM(Mixture of Conditional GGM)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional correlation networks, within Gaussian Graphical Models (GGM), are
widely used to describe the direct interactions between the components of a
random vector. In the case of an unlabelled Heterogeneous population,
Expectation Maximisation (EM) algorithms for Mixtures of GGM have been proposed
to estimate both each sub-population's graph and the class labels. However, we
argue that, with most real data, class affiliation cannot be described with a
Mixture of Gaussian, which mostly groups data points according to their
geometrical proximity. In particular, there often exists external co-features
whose values affect the features' average value, scattering across the feature
space data points belonging to the same sub-population. Additionally, if the
co-features' effect on the features is Heterogeneous, then the estimation of
this effect cannot be separated from the sub-population identification. In this
article, we propose a Mixture of Conditional GGM (CGGM) that subtracts the
heterogeneous effects of the co-features to regroup the data points into
sub-population corresponding clusters. We develop a penalised EM algorithm to
estimate graph-sparse model parameters. We demonstrate on synthetic and real
data how this method fulfils its goal and succeeds in identifying the
sub-populations where the Mixtures of GGM are disrupted by the effect of the
co-features.
- Abstract(参考訳): ガウス図形モデル(GGM)内の条件相関ネットワークは、ランダムベクトルの成分間の直接相互作用を記述するために広く使われている。
不均質な集団の場合、GGMの混合に対する期待最大化(EM)アルゴリズムは、各サブポピュレーショングラフとクラスラベルの両方を推定するために提案されている。
しかし、ほとんどの実データでは、クラスアフィリエーションはガウスの混合物では記述できないと論じている。
特に、その値が特徴の平均値に影響を与え、同じ部分人口に属する特徴空間データポイントに散在する外部機能が存在することが多い。
さらに、機能に対する共フィーチャの効果が異質であれば、この効果の推定はサブ人口識別から分離することはできない。
本稿では,データポイントをサブポピュレーション対応クラスタに再分類するために,共機能の不均一な効果を減じる条件付きGGM(Mixture of Conditional GGM)を提案する。
グラフスパースモデルパラメータを推定するペナルテッドemアルゴリズムを開発した。
本研究は, 合成データと実データを用いて, この手法が目的を達成し, ggmの混合物が共機能の影響によって破壊される部分集団の同定に成功していることを示す。
関連論文リスト
- The Breakdown of Gaussian Universality in Classification of High-dimensional Mixtures [6.863637695977277]
一般的な混合データ環境下での分類における経験的リスク最小化の高次元的特徴について述べる。
ガウス普遍性の条件を定義し、損失関数の選択に対するそれらの意味について議論する。
論文 参考訳(メタデータ) (2024-10-08T01:45:37Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - Combining propensity score methods with variational autoencoders for
generating synthetic data in presence of latent sub-groups [0.0]
ヘテロジニティは、例えば、サブグループラベルによって示されるように知られ、あるいは未知であり、双曲性や歪みのような分布の性質にのみ反映されるかもしれない。
本研究では,変分オートエンコーダ(VAE)から合成データを取得する際に,このような異種性をどのように保存し,制御するかを検討する。
論文 参考訳(メタデータ) (2023-12-12T22:49:24Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models [74.0430727476634]
結合分布 p(ピクセル特徴,クラス) の高密度な生成型分類器に依存する分割モデルの新たなファミリーを提案する。
さまざまなセグメンテーションアーキテクチャとバックボーンにより、GMMSegはクローズドセットデータセットにおいて差別的よりも優れています。
GMMSegは、オープンワールドデータセットでもうまく機能する。
論文 参考訳(メタデータ) (2022-10-05T05:20:49Z) - Gaussian Latent Dirichlet Allocation for Discrete Human State Discovery [1.057079240576682]
離散状態発見問題に対する教師なし確率モデルであるGaussian Latent Dirichlet Allocation (GLDA)を提案する。
GLDAは、自然言語処理において人気のあるトピックモデルであるLatent Dirichlet Allocation (LDA)から個々の混合構造を借りている。
両データセットにおいて,GLDAを学習したクラスウェイトは,臨床評価したうつ病,不安,ストレススコアと,ベースラインのGMMよりも有意に高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-28T18:33:46Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
遺伝子型代入問題に対する機械学習手法であるMycorrhizaを紹介する。
提案アルゴリズムは系統ネットワークを用いて,標本間の進化的関係を符号化する特徴を設計する。
Mycorrhizaは、大きな平均固定指数(FST)を持つデータセットやハーディ・ワインバーグ平衡からの偏差で特に顕著な利得を得る。
論文 参考訳(メタデータ) (2020-10-14T02:36:27Z) - A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models [78.6363825307044]
本研究は、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱うものである。
我々は,エネルギーベースSOMモデルを勾配勾配下降と解釈できることを示した。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMsを使用して外れ値を検出したりサンプリングしたりするための正式な正当性を与える。
論文 参考訳(メタデータ) (2020-09-24T14:09:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。