Dynamical invariants and quantization of the one-dimensional
time-dependent, damped, and driven harmonic oscillator
- URL: http://arxiv.org/abs/2006.11637v1
- Date: Sat, 20 Jun 2020 19:20:07 GMT
- Title: Dynamical invariants and quantization of the one-dimensional
time-dependent, damped, and driven harmonic oscillator
- Authors: M. C. Bertin, J. R. B. Peleteiro, B. M. Pimentel, J. A. Ramirez
- Abstract summary: It is proposed a quantization procedure for the one-dimensional harmonic oscillator with time-dependent frequency, time-dependent driven force, and time-dependent dissipative term.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, it is proposed a quantization procedure for the
one-dimensional harmonic oscillator with time-dependent frequency,
time-dependent driven force, and time-dependent dissipative term. The method is
based on the construction of dynamical invariants previously proposed by the
authors, in which fundamental importance is given to the linear invariants of
the oscillator.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator [0.0]
We study the time-dependent behaviour of quantum correlations of a system governed by out-of-equilibrium dynamics.
Next, we study a specific case, where the system exhibits chaotic behaviour by computing the quantum Lyapunov from the time-dependent behaviour of OTOC.
arXiv Detail & Related papers (2022-10-03T18:00:02Z) - On Statistical Distribution for Adiabatically Isolated Body [62.997667081978825]
The statistical distribution for the case of an adiabatically isolated body was obtained in the framework of covariant quantum theory.
The energy of an isolated system is an external parameter for the modified distribution instead of temperature.
arXiv Detail & Related papers (2022-05-15T09:33:36Z) - Classical and quantum harmonic oscillators subject to a time dependent
force [0.0]
We address the problem of the quantization of a simple harmonic oscillator perturbed by a time dependent force.
The approach consists of removing the perturbation by a canonical change of coordinates.
To transform between the quantized systems the canonical transformation is implemented as a unitary transformation mapping the states of the perturbed and unperturbed system onto each other.
arXiv Detail & Related papers (2022-04-07T14:13:41Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - A new approach to the quantization of the damped harmonic oscillator [0.0]
A new approach for constructing Lagrangians for driven and undriven linearly damped systems is proposed.
A new time coordinate is introduced to ensure that the resulting Lagrangian satisfies the Helmholtz conditions.
arXiv Detail & Related papers (2021-07-13T03:24:25Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Point transformations: exact solutions of the quantum time-dependent
mass nonstationary oscillator [0.0]
We address the exact solutions of a time-dependent Hamiltonian composed by an oscillator-like interaction with both a frequency and a mass term that depend on time.
The latter is achieved by constructing the appropriate point transformation such that it deforms the Schr"odinger equation of a stationary oscillator into the one of the time-dependent model.
This property leads to a straightforward way to determine constants of motion without requiring to use ansatz.
arXiv Detail & Related papers (2020-02-25T09:06:31Z) - Nonstationary deformed singular oscillator: quantum invariants and the
factorization method [0.0]
New families of time-dependent potentials related with the stationary singular oscillator are introduced.
Some special limits are discussed such that the singular barrier of the potential vanishes, leading to non-singular time-dependent potentials.
arXiv Detail & Related papers (2020-01-19T03:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.