論文の概要: Bidirectionally Self-Normalizing Neural Networks
- arxiv url: http://arxiv.org/abs/2006.12169v5
- Date: Fri, 3 Dec 2021 03:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 04:19:40.303549
- Title: Bidirectionally Self-Normalizing Neural Networks
- Title(参考訳): 双方向自己正規化ニューラルネットワーク
- Authors: Yao Lu, Stephen Gould, Thalaiyasingam Ajanthan
- Abstract要約: 本研究では, ニューラルネットワークの幅が十分であれば, 消失/爆発の勾配問題は高い確率で消失することを示す厳密な結果を与える。
我々の主な考えは、新しい種類の活性化関数を通して、非線形ニューラルネットワークにおける前方信号と後方信号の伝搬を制限することである。
- 参考スコア(独自算出の注目度): 46.20979546004718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of vanishing and exploding gradients has been a long-standing
obstacle that hinders the effective training of neural networks. Despite
various tricks and techniques that have been employed to alleviate the problem
in practice, there still lacks satisfactory theories or provable solutions. In
this paper, we address the problem from the perspective of high-dimensional
probability theory. We provide a rigorous result that shows, under mild
conditions, how the vanishing/exploding gradients problem disappears with high
probability if the neural networks have sufficient width. Our main idea is to
constrain both forward and backward signal propagation in a nonlinear neural
network through a new class of activation functions, namely Gaussian-Poincar\'e
normalized functions, and orthogonal weight matrices. Experiments on both
synthetic and real-world data validate our theory and confirm its effectiveness
on very deep neural networks when applied in practice.
- Abstract(参考訳): 勾配の消失と爆発の問題は、ニューラルネットワークの効果的なトレーニングを妨げる長年の障害だった。
実際には問題を緩和するために様々なトリックやテクニックが用いられてきたが、十分な理論や証明可能な解決策はいまだに存在しない。
本稿では,高次元確率論の観点からこの問題に対処する。
本研究では, ニューラルネットワークの幅が十分であれば, 消失/爆発の勾配問題は高い確率で消失することを示す厳密な結果を与える。
我々の主な考えは、非線形ニューラルネットワークにおける前方および後方信号の伝搬を、ガウス-ポアンカー-エ正規化関数と直交重み行列という新しい種類の活性化関数によって制限することである。
合成データと実世界のデータの両方の実験は、我々の理論を検証し、実際に適用した場合、非常に深いニューラルネットワーク上での有効性を確認する。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
2層畳み込みニューラルネットワーク(CNN)の訓練における良性過剰適合現象の検討
信号対雑音比が一定の条件を満たすと、勾配降下により訓練された2層CNNが任意に小さな訓練と試験損失を達成できることを示す。
一方、この条件が保たない場合、オーバーフィッティングは有害となり、得られたCNNは一定レベルのテスト損失しか達成できない。
論文 参考訳(メタデータ) (2022-02-14T07:45:51Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - A Deep Conditioning Treatment of Neural Networks [37.192369308257504]
本研究では,入力データの特定のカーネル行列の条件付けを改善することにより,ニューラルネットワークのトレーニング性を向上させることを示す。
ニューラルネットワークの上位層のみのトレーニングと、ニューラルネットワークのタンジェントカーネルを通じてすべてのレイヤをトレーニングするための学習を行うためのバージョンを提供しています。
論文 参考訳(メタデータ) (2020-02-04T20:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。