論文の概要: Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime
- arxiv url: http://arxiv.org/abs/2006.12297v2
- Date: Fri, 11 Jun 2021 14:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 05:03:15.415749
- Title: Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime
- Title(参考訳): ニューラルタンジェントカーネルレジームにおける平均確率勾配の最適速度
- Authors: Atsushi Nitanda, Taiji Suzuki
- Abstract要約: 平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
- 参考スコア(独自算出の注目度): 50.510421854168065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the convergence of the averaged stochastic gradient descent for
overparameterized two-layer neural networks for regression problems. It was
recently found that a neural tangent kernel (NTK) plays an important role in
showing the global convergence of gradient-based methods under the NTK regime,
where the learning dynamics for overparameterized neural networks can be almost
characterized by that for the associated reproducing kernel Hilbert space
(RKHS). However, there is still room for a convergence rate analysis in the NTK
regime. In this study, we show that the averaged stochastic gradient descent
can achieve the minimax optimal convergence rate, with the global convergence
guarantee, by exploiting the complexities of the target function and the RKHS
associated with the NTK. Moreover, we show that the target function specified
by the NTK of a ReLU network can be learned at the optimal convergence rate
through a smooth approximation of a ReLU network under certain conditions.
- Abstract(参考訳): 重回帰問題に対する過パラメータ2層ニューラルネットワークの平均確率的勾配降下の収束解析を行った。
近年、ニューラルネットワークの学習力学は、関連する再生カーネルヒルベルト空間(RKHS)の学習力学をほとんど特徴付けることができるNTK体制下で、勾配に基づく手法のグローバルな収束を示す上で、神経タンジェントカーネル(NTK)が重要な役割を果たすことが判明した。
しかし、NTK体制には収束速度分析の余地は残っている。
本研究では,平均的な確率的勾配勾配降下が,目標関数とntkに関連するrkhsの複雑さを生かして,大域収束保証により最小収束率を達成できることを示す。
さらに,特定の条件下でのReLUネットワークのスムーズな近似により,ReLUネットワークのNTKによって指定された対象関数を最適収束率で学習できることが示される。
関連論文リスト
- Stochastic Gradient Descent for Two-layer Neural Networks [2.0349026069285423]
本稿では、過パラメータ化された2層ニューラルネットワークに適用した場合の降下(SGD)アルゴリズムの収束率について検討する。
提案手法は,NTKのタンジェントカーネル(NTK)近似と,NTKが生成する再生カーネル空間(RKHS)の収束解析を組み合わせたものである。
我々の研究フレームワークは、カーネルメソッドと最適化プロセスの間の複雑な相互作用を探索し、ニューラルネットワークのダイナミクスと収束特性に光を当てることを可能にする。
論文 参考訳(メタデータ) (2024-07-10T13:58:57Z) - How many Neurons do we need? A refined Analysis for Shallow Networks
trained with Gradient Descent [0.0]
ニューラル・タンジェント・カーネル・システムにおける2層ニューラルネットワークの一般化特性を解析した。
非パラメトリック回帰の枠組みにおいて、最小限最適であることが知られている収束の速い速度を導出する。
論文 参考訳(メタデータ) (2023-09-14T22:10:28Z) - A Neural Network-Based Enrichment of Reproducing Kernel Approximation
for Modeling Brittle Fracture [0.0]
脆性破壊をモデル化するためのニューラルネットワーク強化再生カーネル粒子法(NN-RKPM)の改良版を提案する。
提案手法の有効性は,損傷伝播と分岐を含む一連の数値例によって実証された。
論文 参考訳(メタデータ) (2023-07-04T21:52:09Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
勾配流(GF)を用いた広帯域ニューラルネットワーク(NN)の最適化について検討する。
入力次元がトレーニングセットのサイズ以下である場合、トレーニング損失はGFの下での線形速度で0に収束することを示す。
また、ニューラル・タンジェント・カーネル(NTK)システムとは異なり、我々の多層モデルは特徴学習を示し、NTKモデルよりも優れた一般化性能が得られることを実証的に示す。
論文 参考訳(メタデータ) (2022-04-22T15:56:43Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
論文 参考訳(メタデータ) (2022-01-28T11:30:06Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
最近の研究報告では、NTKレグレッションは、小規模データセットでトレーニングされた有限範囲のニューラルネットワークより優れている。
我々は、アークコサインカーネルの拡張をスケッチして、NTKの近距離入力スパーシティ時間近似アルゴリズムを設計する。
CNTKの特徴をトレーニングした線形回帰器が,CIFAR-10データセット上での正確なCNTKの精度と150倍の高速化を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-15T04:44:52Z) - Weighted Neural Tangent Kernel: A Generalized and Improved
Network-Induced Kernel [20.84988773171639]
Neural Tangent Kernel(NTK)は、勾配降下によって訓練された過剰パラメーターニューラルネットワーク(NN)の進化を記述することで、近年、激しい研究を惹きつけている。
Weighted Neural Tangent Kernel (WNTK) は、一般化された改良されたツールであり、異なる勾配の下でパラメータ化されたNNのトレーニングダイナミクスをキャプチャすることができる。
提案する重み更新アルゴリズムでは,実験値と解析値の両方が,数値実験において対応するntkを上回っている。
論文 参考訳(メタデータ) (2021-03-22T03:16:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。