論文の概要: Inference of Abstraction for a Unified Account of Reasoning and Learning
- arxiv url: http://arxiv.org/abs/2402.09046v1
- Date: Wed, 14 Feb 2024 09:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 16:21:05.523825
- Title: Inference of Abstraction for a Unified Account of Reasoning and Learning
- Title(参考訳): 推論と学習の統一的説明のための抽象化の推論
- Authors: Hiroyuki Kido
- Abstract要約: 我々は、推論と学習の統一的な説明のために、単純な確率的推論の理論を与える。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的な知識を引き起こすかをモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by Bayesian approaches to brain function in neuroscience, we give a
simple theory of probabilistic inference for a unified account of reasoning and
learning. We simply model how data cause symbolic knowledge in terms of its
satisfiability in formal logic. The underlying idea is that reasoning is a
process of deriving symbolic knowledge from data via abstraction, i.e.,
selective ignorance. The logical consequence relation is discussed for its
proof-based theoretical correctness. The MNIST dataset is discussed for its
experiment-based empirical correctness.
- Abstract(参考訳): 神経科学における脳機能に対するベイズ的アプローチに着想を得て、推論と学習の統一的な説明に対する確率的推論の単純な理論を与える。
形式論理におけるその満足度の観点から、データの象徴的知識のモデル化を行う。
基本的な考え方は、推論は抽象的、すなわち選択的無知を通じてデータから記号的知識を導出するプロセスである、ということである。
証明に基づく理論的正確性について、論理的帰結関係について論じる。
MNISTデータセットは実験に基づく経験的正確性のために議論されている。
関連論文リスト
- Inference of Abstraction for a Unified Account of Symbolic Reasoning
from Data [0.0]
データから様々な種類の記号的推論を統一的確率論的に記述する。
この理論は、人間のようなマシンインテリジェンスに対する推論に関する新たな洞察を与える。
論文 参考訳(メタデータ) (2024-02-13T18:24:23Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
我々は、LMを、事前学習時に見られる間接的推論経路を集約することで、新たな結論を導出すると考えている。
我々は、推論経路を知識/推論グラフ上のランダムウォークパスとして定式化する。
複数のKGおよびCoTデータセットの実験と分析により、ランダムウォークパスに対するトレーニングの効果が明らかにされた。
論文 参考訳(メタデータ) (2024-02-05T18:25:51Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - A Simple Generative Model of Logical Reasoning and Statistical Learning [0.6853165736531939]
統計的学習と論理的推論は、AIの2つの主要な分野であり、人間のようなマシンインテリジェンスに統一されることが期待されている。
本稿では、論理的推論と統計的学習の単純なベイズモデルを提案する。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的知識を引き起こすかをモデル化する。
論文 参考訳(メタデータ) (2023-05-18T16:34:51Z) - Generative Logic with Time: Beyond Logical Consistency and Statistical
Possibility [0.6853165736531939]
本稿では,データから記号的知識を生成する時間確率モデルを提案する。
モデルの正しさは、コルモゴロフの公理、フェンシュタットの定理、最大推定値との整合性の観点から正当化される。
論文 参考訳(メタデータ) (2023-01-20T10:55:49Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Towards Unifying Perceptual Reasoning and Logical Reasoning [0.6853165736531939]
論理学の最近の研究は、論理的推論をベイズ的推論として提示している。
モデルが知覚システムと論理システムに共通する2つの本質的なプロセスを統合することを示す。
論文 参考訳(メタデータ) (2022-06-27T10:32:47Z) - On the Paradox of Learning to Reason from Data [86.13662838603761]
BERTは,同じ問題空間上での他のデータ分布への一般化に失敗しながら,分布内テスト例に対してほぼ完全な精度が得られることを示す。
このパラドックスは、正しい推論関数をエミュレートする学習ではなく、論理的推論問題に本質的に存在する統計的特徴を実際に学習している。
論文 参考訳(メタデータ) (2022-05-23T17:56:48Z) - Observing Interventions: A logic for thinking about experiments [62.997667081978825]
本稿では,実験から学ぶ論理への第一歩について述べる。
我々のアプローチにとって重要なことは、介入の概念が(現実的または仮説的な)実験の形式的表現として使用できるという考えである。
提案された全ての論理系に対して、健全で完全な公理化を提供する。
論文 参考訳(メタデータ) (2021-11-25T09:26:45Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。