Entropic uncertainty lower bound for a two-qubit system coupled to a
spin chain with Dzyaloshinskii-Moriya interaction
- URL: http://arxiv.org/abs/2006.13797v1
- Date: Wed, 24 Jun 2020 15:10:32 GMT
- Title: Entropic uncertainty lower bound for a two-qubit system coupled to a
spin chain with Dzyaloshinskii-Moriya interaction
- Authors: Soroush Haseli, Saeed Haddadi and Mohammad Reza Pourkarimi
- Abstract summary: In quantum information theory, the uncertainty principle is formulated using the concept of entropy.
We study the dynamics of entropic uncertainty bound for a two-qubit quantum system coupled to a spin chain with Dzyaloshinskii-Moriya interaction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The uncertainty principle is one of the key concepts in quantum theory. This
principle states that it is not possible to measure two incompatible
observables simultaneously and accurately. In quantum information theory, the
uncertainty principle is formulated using the concept of entropy. In this work
we consider the entropic uncertainty relation in the presence of quantum
memory. We study the dynamics of entropic uncertainty bound for a two-qubit
quantum system coupled to a spin chain with Dzyaloshinskii-Moriya interaction
and we investigate the effect of environmental parameters on the entropic
uncertainty bound. Notably, our results reveal that there exist some
environmental parameters which can be changed to suppress the entropic
uncertainty bound.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - The effects of detuning on entropic uncertainty bound and quantum
correlations in dissipative environment [0.0]
We will use the entropic uncertainty relation in the presence of quantum memory.
The effects of the detuning between the transition frequency of a quantum memory and the center frequency of a cavity on entrpic uncertainty bound and quantum correlation between quantum memory and measured particle will be studied.
arXiv Detail & Related papers (2024-01-18T08:04:53Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Characterization of the measurement uncertainty dynamics in an open
system [6.417948558033516]
Information entropy can perfectly describe this type of randomness in information theory, because entropy can measure the degree of chaos in a given quantum system.
In this paper, we investigate the dynamical features of the von Neumann entropic uncertainty in the presence of quantum memory.
We put forward some effective operation strategies to reduce the magnitude of the measurement uncertainty under the open systems.
arXiv Detail & Related papers (2021-10-22T15:07:08Z) - Relative entropic uncertainty relation for scalar quantum fields [0.0]
We introduce the notion of a functional relative entropy and show that it has a meaningful field theory limit.
We show that the relation implies the multidimensional Heisenberg uncertainty relation.
arXiv Detail & Related papers (2021-07-16T11:15:07Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum correlations and quantum-memory-assisted entropic uncertainty
relation in a quantum dot system [0.0]
Uncertainty principle is one of the comprehensive and fundamental concept in quantum theory.
We will study the quantum correlation and quantum memory assisted entropic uncertainty in a quantum dot system.
arXiv Detail & Related papers (2020-06-08T05:16:09Z) - Improved tripartite uncertainty relation with quantum memory [5.43508370077166]
Uncertainty principle is a striking and fundamental feature in quantum mechanics.
In quantum information theory, this uncertainty principle is popularly formulized in terms of entropy.
We present an improvement of tripartite quantum-memory-assisted entropic uncertainty relation.
arXiv Detail & Related papers (2020-04-09T03:54:51Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.