Entanglement Harvesting of Inertially Moving Unruh-DeWitt Detectors in
Minkowski Spacetime
- URL: http://arxiv.org/abs/2205.14739v2
- Date: Tue, 5 Jul 2022 08:03:05 GMT
- Title: Entanglement Harvesting of Inertially Moving Unruh-DeWitt Detectors in
Minkowski Spacetime
- Authors: Cendikiawan Suryaatmadja, Wan Cong, Robert .B. Mann
- Abstract summary: We investigate the effects of relative motion on entanglement harvesting by considering a pair of Unruh-Dewitt detectors moving at arbitrary, but independent, velocities.
We find that the Negativity is a function of the relative velocity of the detectors, as well as their energy gaps and minimal separation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the effects of relative motion on entanglement harvesting by
considering a pair of Unruh-Dewitt detectors moving at arbitrary, but
independent and constant velocities, both linearly interacting with the vacuum
scalar field. Working within the weak coupling approximation, we find that the
Negativity is a (non-elementary) function of the relative velocity of the
detectors, as well as their energy gaps and minimal separation. We find
parameter regions where Negativity increases with velocity up to a maximum and
then decreases, reaching zero at some sublight velocity. At any given relative
velocity, the harvested entanglement is inversely correlated with the detector
energy gap (at sufficiently high values) and the distance of closest approach
of two detectors.
Related papers
- The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Probing long-range properties of vacuum altered by uniformly
accelerating two spatially separated Unruh-DeWitt detectors [0.0]
Long-range properties of a quantum vacuum may be probed by distributing matter over a large spatial volume.
We study two uniformly accelerated Unruh-DeWitt detectors which are spatially separated.
When the inter-detector separation is much larger than the thermal wavelength of the Unruh thermal bath, the inter-detector interaction displays a completely new behavior.
arXiv Detail & Related papers (2022-05-23T07:05:41Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Does acceleration assist entanglement harvesting? [6.255508552377236]
We explore whether acceleration assists entanglement harvesting for a pair of uniformly accelerated detectors in three different acceleration scenarios.
We find that acceleration is a mixed blessing insofar as it increases the harvested entanglement for a large detector energy gap.
For very small acceleration and large energy gap, acceleration-assisted enhancement can happen in all three acceleration scenarios.
arXiv Detail & Related papers (2021-11-08T11:23:05Z) - New results on vacuum fluctuations: Accelerated detector versus inertial
detector in a quantum field [0.0]
We focus on two moving detectors system for future application in quantum teleportation.
We find that the rajectory of a uniformly accelerated detector in Rindler space cannot be extended to a trajectory in which a detector moves at constant velocity.
arXiv Detail & Related papers (2021-04-07T17:06:33Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Field assisted extraction and swelling of quantum coherence for moving
Unruh-DeWitt detectors [0.0]
We study the effects of motion for an Unruh-DeWitt detector, modeled as a two-level system, on the amount of coherence extracted.
We observe that compared to a detector at rest, for certain values of the initial energy of the field and the interaction duration, the amount is larger for both a detector moving with a constant speed or uniform acceleration.
arXiv Detail & Related papers (2020-06-24T17:48:41Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Unruh effect for detectors in superposition of accelerations [0.0]
The Unruhh effect is the phenomenon that accelerated observers detect particles even when inertial observers experience the vacuum state.
Here we consider the Unruhh effect for a detector that excitation a quantum supertime of different trajectories in Minkowski space.
arXiv Detail & Related papers (2020-03-27T19:02:34Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.