論文の概要: A Data-driven Market Simulator for Small Data Environments
- arxiv url: http://arxiv.org/abs/2006.14498v1
- Date: Sun, 21 Jun 2020 14:04:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 12:04:57.368045
- Title: A Data-driven Market Simulator for Small Data Environments
- Title(参考訳): 小規模データ環境のためのデータ駆動市場シミュレータ
- Authors: Hans B\"uhler, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and
Ben Wood
- Abstract要約: ニューラルネットワークに基づくデータ駆動市場シミュレーションは、金融時系列をモデリングする新しいフレキシブルな方法を公開する。
本稿では,財務時系列のエンコーディングと評価を行う強力な方法として,大まかなパスパースペクティブと擬似変分自動エンコーダフレームワークが組み合わさった方法を示す。
- 参考スコア(独自算出の注目度): 0.5872014229110214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network based data-driven market simulation unveils a new and flexible
way of modelling financial time series without imposing assumptions on the
underlying stochastic dynamics. Though in this sense generative market
simulation is model-free, the concrete modelling choices are nevertheless
decisive for the features of the simulated paths. We give a brief overview of
currently used generative modelling approaches and performance evaluation
metrics for financial time series, and address some of the challenges to
achieve good results in the latter. We also contrast some classical approaches
of market simulation with simulation based on generative modelling and
highlight some advantages and pitfalls of the new approach. While most
generative models tend to rely on large amounts of training data, we present
here a generative model that works reliably in environments where the amount of
available training data is notoriously small. Furthermore, we show how a rough
paths perspective combined with a parsimonious Variational Autoencoder
framework provides a powerful way for encoding and evaluating financial time
series in such environments where available training data is scarce. Finally,
we also propose a suitable performance evaluation metric for financial time
series and discuss some connections of our Market Generator to deep hedging.
- Abstract(参考訳): ニューラルネットワークベースのデータ駆動市場シミュレーションは、基盤となる確率的ダイナミクスを前提にすることなく、金融時系列をモデリングする新しい柔軟な方法を公開する。
この意味では、生成市場シミュレーションはモデルフリーであるが、具体的なモデリングの選択はシミュレーションパスの特徴に対して決定的である。
金融時系列における現在使われている生成的モデリング手法と性能評価指標の概要を概観し、後者で良い結果を得るための課題をいくつか取り上げる。
また,市場シミュレーションの古典的手法と生成的モデリングに基づくシミュレーションを対比し,新しい手法の利点と落とし穴を浮き彫りにする。
ほとんどの生成モデルは大量のトレーニングデータに依存する傾向がありますが、ここでは利用可能なトレーニングデータの量が小さい環境で確実に機能する生成モデルを示します。
さらに,学習データが少ない環境において,大まかなパスパースペクティブと相似な変動オートエンコーダフレームワークが,財務時系列のエンコーディングと評価を行う強力な方法を提供することを示す。
最後に,金融時系列に適した性能評価指標を提案し,マーケットジェネレータとディープヘッジとの関係について考察する。
関連論文リスト
- Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
時系列データは、金融や医療など、さまざまな分野において重要である。
従来の評価基準は、時間的依存関係と潜在的な特徴の高次元性のために不足している。
Recurrent Neural (RENAL) Goodness-of-Fit testは,生成時系列モデルを評価するための新しい,統計的に厳密なフレームワークである。
論文 参考訳(メタデータ) (2024-10-17T19:32:25Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Deep Generative Modeling for Financial Time Series with Application in
VaR: A Comparative Review [22.52651841623703]
ヒストリカル・シミュレーション(HS)は、翌日にリスクファクターの予測分布が戻ると、ヒストリカル・ウィンドウにおける日々のリターンの実証的な分布を利用する。
HS, GARCH および CWGAN モデルは, 歴史的USD 収率曲線データと GARCH および CIR プロセスからシミュレーションした追加データの両方で試験される。
研究によると、トップパフォーマンスモデルはHS、GARCH、CWGANモデルである。
論文 参考訳(メタデータ) (2024-01-18T20:35:32Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
近年,モデルに基づく強化学習アルゴリズムは視覚入力環境において顕著な有効性を示している。
本稿では,強力なモデリングと生成機能を組み合わせた効率的な世界モデルアーキテクチャであるTransformer-based wORld Model (STORM)を紹介する。
Stormは、Atari 100$kベンチマークで平均126.7%の人的パフォーマンスを達成し、最先端のメソッドの中で新しい記録を樹立した。
論文 参考訳(メタデータ) (2023-10-14T16:42:02Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Long-term stability and generalization of observationally-constrained
stochastic data-driven models for geophysical turbulence [0.19686770963118383]
ディープラーニングモデルは、現在の最先端の気象モデルにおける特定のバイアスを軽減することができる。
データ駆動モデルは、再分析(観測データ)製品から利用できない多くのトレーニングデータを必要とします。
決定論的データ駆動予測モデルは、長期的な安定性と非物理的気候の漂流の問題に悩まされる。
本稿では,不完全な気候モデルシミュレーションに基づいて事前学習した畳み込み変分自動エンコーダに基づくデータ駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-09T23:52:37Z) - Black-box Bayesian inference for economic agent-based models [0.0]
2種類のブラックボックス近似ベイズ推定法の有効性について検討した。
ニューラルネットワークに基づくブラックボックス法は, 経済シミュレーションモデルに対して, アートパラメータ推論の状態を提示する。
論文 参考訳(メタデータ) (2022-02-01T18:16:12Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Recurrent Conditional Heteroskedasticity [0.0]
本稿では,Recurrent Conditional Heteroskedastic(RECH)モデルと呼ばれる新たな金融変動モデルを提案する。
特に、リカレントニューラルネットワークが支配する補助的決定過程を、従来の条件付きヘテロスケダスティックモデルの条件分散に組み込む。
論文 参考訳(メタデータ) (2020-10-25T08:09:29Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。