Solving MKP Applied to IoT in Smart Grid Using Meta-heuristics
Algorithms: A Parallel Processing Perspective
- URL: http://arxiv.org/abs/2006.15927v1
- Date: Mon, 29 Jun 2020 10:49:18 GMT
- Title: Solving MKP Applied to IoT in Smart Grid Using Meta-heuristics
Algorithms: A Parallel Processing Perspective
- Authors: Jandre Albertyn, Ling Cheng, Adnan M. Abu-Mahfouz
- Abstract summary: Increasing electricity prices in South Africa has led to a need for Demand Side Management (DSM) devices like smart grids.
For smart grids to perform to their peak, their energy management controller (EMC) systems need to be optimized.
- Score: 0.22940141855172028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing electricity prices in South Africa and the imminent threat of load
shedding due to the overloaded power grid has led to a need for Demand Side
Management (DSM) devices like smart grids. For smart grids to perform to their
peak, their energy management controller (EMC) systems need to be optimized.
Current solutions for DSM and optimization of the Multiple Knapsack Problem
(MKP) have been investigated in this paper to discover the current state of
common DSM models. Solutions from other NP-Hard problems in the form of the
iterative Discrete Flower Pollination Algorithm (iDFPA) as well as possible
future scalability options in the form of optimization through parallelization
have also been suggested.
Related papers
- Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Adaptive Dynamic Programming for Energy-Efficient Base Station Cell
Switching [19.520603265594108]
Energy saving in wireless networks is growing in importance due to increasing demand for evolving new-gen cellular networks.
We propose an approximate dynamic programming (ADP)-based method coupled with online optimization to switch on/off the cells of base stations to reduce network power consumption.
arXiv Detail & Related papers (2023-10-05T14:50:12Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Reimagining Demand-Side Management with Mean Field Learning [0.0]
We propose a new method for DSM, in particular the problem of controlling a large population of electrical devices to follow a desired consumption signal.
We develop a new algorithm, MD-MFC, which provides theoretical guarantees for convex and Lipschitz objective functions.
arXiv Detail & Related papers (2023-02-16T10:15:08Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Hybrid Quantum-Classical Multi-cut Benders Approach with a Power System
Application [0.0]
A quantum-classical (HQC) solution to the Unit Commitment (UC) problem is presented.
The validity and computational viability of the proposed approach are demonstrated using the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2021-12-10T16:16:09Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.