Strong Coupling Quantum Thermodynamics far away from Equilibrium:
Non-Markovian Transient Quantum Heat and Work
- URL: http://arxiv.org/abs/2206.05722v1
- Date: Sun, 12 Jun 2022 12:04:27 GMT
- Title: Strong Coupling Quantum Thermodynamics far away from Equilibrium:
Non-Markovian Transient Quantum Heat and Work
- Authors: Wei-Ming Huang, Wei-Min Zhang
- Abstract summary: The strong coupling hybrid system consists of a cavity and a spin ensemble of the NV centers in diamond under external driving.
We find that the dissipation and fluctuation dynamics of the system induce the transient quantum heat current.
On the other hand, the energy renormalization and the external driving induce the quantum work power.
- Score: 2.542198147027801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the strong coupling quantum thermodynamics of
the hybrid quantum system far away from equilibrium. The strong coupling hybrid
system consists of a cavity and a spin ensemble of the NV centers in diamond
under external driving that has been realized experimentally. We apply the
renormalization theory of quantum thermodynamics we developed recently to study
the transient quantum heat and work in this hybrid system. We find that the
dissipation and fluctuation dynamics of the system induce the transient quantum
heat current which involve the significant non-Markovian effects. On the other
hand, the energy renormalization and the external driving induce the quantum
work power. The driving-induced work power also manifests non-Markovian effects
due to the feedback of non-Markovian dynamics of the cavity due to its strong
coupling with the spin ensemble.
Related papers
- Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Impurity reveals distinct operational phases in quantum thermodynamic
cycles [23.09629129922603]
impurity unlocks new operational phases in the system, such as a quantum heat engine, quantum refrigerator, and quantum cold pump.
The cooling power and coefficient of performance of the quantum refrigerator and quantum cold pump are non-trivially affected by the impurity.
arXiv Detail & Related papers (2022-07-06T13:01:06Z) - Quantum thermodynamics of periodically driven polaritonic systems [0.0]
We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
arXiv Detail & Related papers (2022-07-03T04:32:11Z) - Thermally-induced qubit coherence in quantum electromechanics [0.0]
Coherence is the ability of a quantum system to be in a superposition of quantum states.
We show that quantum coherence is created in a composite system solely from the interaction of the parts.
arXiv Detail & Related papers (2022-06-09T13:33:45Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach [1.8492669447784602]
We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
arXiv Detail & Related papers (2020-06-29T14:13:59Z) - Managing quantum heat transfer in nonequilibrium qubit-phonon hybrid
system [4.809446324180698]
We investigate quantum heat transfer and thermal management in the nonequilibrium qubit-phonon hybrid system.
We obtain the steady state heat flow by tuning the arbitrary qubit-phonon coupling strength.
arXiv Detail & Related papers (2020-03-12T02:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.