論文の概要: On the Privacy-Utility Tradeoff in Peer-Review Data Analysis
- arxiv url: http://arxiv.org/abs/2006.16385v1
- Date: Mon, 29 Jun 2020 21:08:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 15:35:00.754552
- Title: On the Privacy-Utility Tradeoff in Peer-Review Data Analysis
- Title(参考訳): ピアレビューデータ分析におけるプライバシー利用トレードオフについて
- Authors: Wenxin Ding, Nihar B. Shah, Weina Wang
- Abstract要約: ピアレビューの改善に関する研究における大きな障害は、ピアレビューデータの利用不可能である。
我々は、特定の会議のピアレビューデータのプライバシー保護のためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 34.0435377376779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major impediment to research on improving peer review is the unavailability
of peer-review data, since any release of such data must grapple with the
sensitivity of the peer review data in terms of protecting identities of
reviewers from authors. We posit the need to develop techniques to release
peer-review data in a privacy-preserving manner. Identifying this problem, in
this paper we propose a framework for privacy-preserving release of certain
conference peer-review data -- distributions of ratings, miscalibration, and
subjectivity -- with an emphasis on the accuracy (or utility) of the released
data. The crux of the framework lies in recognizing that a part of the data
pertaining to the reviews is already available in public, and we use this
information to post-process the data released by any privacy mechanism in a
manner that improves the accuracy (utility) of the data while retaining the
privacy guarantees. Our framework works with any privacy-preserving mechanism
that operates via releasing perturbed data. We present several positive and
negative theoretical results, including a polynomial-time algorithm for
improving on the privacy-utility tradeoff.
- Abstract(参考訳): ピアレビューの改善に関する研究における大きな障害は、レビューデータの公開は、レビュー者のアイデンティティを著者から守るという点において、ピアレビューデータの感度を損なう必要があるため、ピアレビューデータの有効性である。
プライバシ保護方式でピアレビューデータを公開するための技術開発の必要性を示唆する。
この問題を明らかにするため,本稿では,公開データの正確性(あるいは有用性)を重視した,特定の会議ピアレビューデータ(評価,誤校正,主観性の分布)のプライバシ保護のためのフレームワークを提案する。
フレームワークの要点は、レビューに関連するデータの一部がすでに公開されており、プライバシー保証を維持しながらデータの正確性(実用性)を向上させる方法で、この情報を使用して、プライバシメカニズムによってリリースされたデータを後処理することです。
当社のフレームワークは、摂動データを公開することによって動作するプライバシー保護機構で機能する。
プライバシとユーティリティのトレードオフを改善する多項式時間アルゴリズムを含む,いくつかの肯定的および否定的な理論結果を示す。
関連論文リスト
- Synthetic Data: Revisiting the Privacy-Utility Trade-off [4.832355454351479]
ある記事は、合成データは従来の匿名化技術よりもプライバシーとユーティリティのトレードオフが良くないと述べている。
記事はまた、PATEGANとPrivBayesが提供した差分プライバシー保証の違反を特定したと主張している。
本稿で記述したプライバシゲームの実装を分析し,高度に専門的で制約のある環境で動作していることを確認した。
論文 参考訳(メタデータ) (2024-07-09T14:48:43Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Yes-Yes-Yes: Donation-based Peer Reviewing Data Collection for ACL
Rolling Review and Beyond [58.71736531356398]
本稿では、ピアレビューデータについて詳細な議論を行い、ピアレビューデータ収集のための倫理的・法的デシダータの概要を述べるとともに、最初の継続的な寄付ベースのデータ収集ワークフローを提案する。
本稿では、ACL Rolling Reviewにおいて、このワークフローの現在進行中の実装について報告し、新たに収集したデータから得られた最初の洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T11:02:43Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
原データの特定の統計特性を反映した合成データを使用することで、原データのプライバシーが保護される。
以前の作業では、正式なプライバシ保証を提供するために、差分プライベートなデータリリースメカニズムを使用していました。
トレーニングプロセスに因果情報を導入し、上記のトレードオフを好意的に修正することを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:46:57Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - A Critical Overview of Privacy-Preserving Approaches for Collaborative
Forecasting [0.0]
異なるデータ所有者間の協力は、予測品質の改善につながる可能性がある。
ビジネス上の競争要因と個人データ保護の問題から、データ所有者はデータの共有を望まないかもしれない。
本稿では、現状を解析し、データプライバシを保証する既存の方法の欠点をいくつか明らかにする。
論文 参考訳(メタデータ) (2020-04-20T20:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。