論文の概要: Synthetic Data: Revisiting the Privacy-Utility Trade-off
- arxiv url: http://arxiv.org/abs/2407.07926v1
- Date: Tue, 9 Jul 2024 14:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:58:43.540458
- Title: Synthetic Data: Revisiting the Privacy-Utility Trade-off
- Title(参考訳): 合成データ - プライバシとユーティリティのトレードオフを再考する
- Authors: Fatima Jahan Sarmin, Atiquer Rahman Sarkar, Yang Wang, Noman Mohammed,
- Abstract要約: ある記事は、合成データは従来の匿名化技術よりもプライバシーとユーティリティのトレードオフが良くないと述べている。
記事はまた、PATEGANとPrivBayesが提供した差分プライバシー保証の違反を特定したと主張している。
本稿で記述したプライバシゲームの実装を分析し,高度に専門的で制約のある環境で動作していることを確認した。
- 参考スコア(独自算出の注目度): 4.832355454351479
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic data has been considered a better privacy-preserving alternative to traditionally sanitized data across various applications. However, a recent article challenges this notion, stating that synthetic data does not provide a better trade-off between privacy and utility than traditional anonymization techniques, and that it leads to unpredictable utility loss and highly unpredictable privacy gain. The article also claims to have identified a breach in the differential privacy guarantees provided by PATEGAN and PrivBayes. When a study claims to refute or invalidate prior findings, it is crucial to verify and validate the study. In our work, we analyzed the implementation of the privacy game described in the article and found that it operated in a highly specialized and constrained environment, which limits the applicability of its findings to general cases. Our exploration also revealed that the game did not satisfy a crucial precondition concerning data distributions, which contributed to the perceived violation of the differential privacy guarantees offered by PATEGAN and PrivBayes. We also conducted a privacy-utility trade-off analysis in a more general and unconstrained environment. Our experimentation demonstrated that synthetic data achieves a more favorable privacy-utility trade-off compared to the provided implementation of k-anonymization, thereby reaffirming earlier conclusions.
- Abstract(参考訳): 合成データは、伝統的に衛生化されたデータに代えて、さまざまなアプリケーションにまたがるより良いプライバシー保護の代替と見なされてきた。
しかし、最近の記事では、合成データは従来の匿名化技術よりもプライバシーとユーティリティのトレードオフが優れているわけではなく、予測不可能なユーティリティ損失と予測不能なプライバシ向上につながっている、というこの概念に異議を唱えている。
記事はまた、PATEGANとPrivBayesが提供した差分プライバシー保証の違反を特定したと主張している。
ある研究が事前の発見を否定または無効化すると主張する場合、その研究を検証し検証することが不可欠である。
本稿では,本論文に記載されているプライバシゲームの実装について分析し,非常に専門的で制約のある環境で動作し,その結果を一般事例に限定した。
調査の結果,PATEGANとPrivBayesによって提供される差分プライバシー保証に違反していると認識されたため,このゲームはデータ配信に関する重要な前提を満たしていないことが明らかとなった。
また、より一般的で制約のない環境で、プライバシ・ユーティリティ・トレードオフ分析を行った。
実験により, 合成データは, k-匿名化の実装よりも, より良好なプライバシーとユーティリティのトレードオフを実現し, 早期の結論を再確認した。
関連論文リスト
- Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set [2.66269503676104]
基本的統計的クエリの集合に対して,リスクメトリックを効率的に計算する方法を示す。
実世界の科学的データセットに基づいた実証分析は、現実的な条件下でのリスクの計算方法に関する知識を拡大します。
論文 参考訳(メタデータ) (2024-07-04T17:50:55Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Practical considerations on using private sampling for synthetic data [1.3654846342364308]
合成データ生成の異なるプライバシは、合成データを自由に使用しながらプライバシを保存する能力のために、多くの注目を集めている。
プライベートサンプリングは、プライバシーと正確性のために厳密な境界を持つ微分プライベートな合成データを構築する最初のノイズフリー手法である。
本稿では,プライベートサンプリングアルゴリズムの実装と,実例における制約の現実性について議論する。
論文 参考訳(メタデータ) (2023-12-12T10:20:04Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
原データの特定の統計特性を反映した合成データを使用することで、原データのプライバシーが保護される。
以前の作業では、正式なプライバシ保証を提供するために、差分プライベートなデータリリースメカニズムを使用していました。
トレーニングプロセスに因果情報を導入し、上記のトレードオフを好意的に修正することを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:46:57Z) - On the Privacy-Utility Tradeoff in Peer-Review Data Analysis [34.0435377376779]
ピアレビューの改善に関する研究における大きな障害は、ピアレビューデータの利用不可能である。
我々は、特定の会議のピアレビューデータのプライバシー保護のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T21:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。