論文の概要: Graph Clustering with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2006.16904v3
- Date: Thu, 1 Jun 2023 01:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 02:31:08.079077
- Title: Graph Clustering with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークによるグラフクラスタリング
- Authors: Anton Tsitsulin, John Palowitch, Bryan Perozzi, Emmanuel M\"uller
- Abstract要約: グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて最先端の結果を得た。
グラフクラスタリングのようなグラフ上の教師なしの問題は、GNNの進歩に対してより抵抗性があることが証明されている。
本稿では,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプール手法であるDeep Modularity Networks (DMoN)を紹介する。
- 参考スコア(独自算出の注目度): 5.305362965553278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art results on many
graph analysis tasks such as node classification and link prediction. However,
important unsupervised problems on graphs, such as graph clustering, have
proved more resistant to advances in GNNs. Graph clustering has the same
overall goal as node pooling in GNNs - does this mean that GNN pooling methods
do a good job at clustering graphs?
Surprisingly, the answer is no - current GNN pooling methods often fail to
recover the cluster structure in cases where simple baselines, such as k-means
applied on learned representations, work well. We investigate further by
carefully designing a set of experiments to study different signal-to-noise
scenarios both in graph structure and attribute data. To address these methods'
poor performance in clustering, we introduce Deep Modularity Networks (DMoN),
an unsupervised pooling method inspired by the modularity measure of clustering
quality, and show how it tackles recovery of the challenging clustering
structure of real-world graphs. Similarly, on real-world data, we show that
DMoN produces high quality clusters which correlate strongly with ground truth
labels, achieving state-of-the-art results with over 40% improvement over other
pooling methods across different metrics.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,ノード分類やリンク予測といった多くのグラフ解析タスクにおいて,最先端の結果を得た。
しかし、グラフクラスタリングのようなグラフ上の重要な教師なしの問題は、GNNの進歩に抵抗性があることが証明されている。
グラフクラスタリングはGNNのノードプーリングと同じ目標を持っていますが、これはGNNプーリングメソッドがクラスタリンググラフでうまく機能することを意味していますか?
現在のGNNプーリングメソッドは、学習した表現に適用されるk-meansのような単純なベースラインがうまく機能する場合、クラスタ構造を回復できないことが多い。
グラフ構造と属性データの両方において異なる信号対雑音のシナリオを研究するための一連の実験を慎重に設計してさらに検討する。
クラスタリングにおけるこれらの手法の貧弱な性能に対処するため,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプーリング手法であるDeep Modularity Networks (DMoN)を導入し,実際のグラフのクラスタリング構造の回復にどのように取り組むかを示す。
同様に、実世界のデータでは、DMoNは、地上の真理ラベルと強く相関する高品質なクラスタを生成し、異なるメトリクスにわたる他のプール手法よりも40%以上改善された最先端の結果を達成する。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
本稿では,グラフの高密度領域からエッジを抽出する新鮮で柔軟なトラスグラフスペーシフィケーションモデルを提案する。
次に、GIN、SAGPool、GMT、DiffPool、MinCutPool、HGP-SL、DMonPool、AdamGNNといった最先端のベースラインGNNとプールモデルでスパーシフィケーションモデルを利用する。
論文 参考訳(メタデータ) (2024-07-16T17:21:36Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
我々はSynC(Syngistic Deep Graph Clustering Network)というグラフクラスタリングフレームワークを提案する。
本稿では,構造拡張を導くための高品質な埋め込みを実現するために,TIGAE (Transform Input Graph Auto-Encoder) を設計する。
特に、表現学習と構造増強は重みを共有し、モデルパラメータの数を著しく減少させる。
論文 参考訳(メタデータ) (2024-06-22T09:40:34Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。