論文の概要: Synergistic Deep Graph Clustering Network
- arxiv url: http://arxiv.org/abs/2406.15797v1
- Date: Sat, 22 Jun 2024 09:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:35:12.274394
- Title: Synergistic Deep Graph Clustering Network
- Title(参考訳): シナジスティックディープグラフクラスタリングネットワーク
- Authors: Benyu Wu, Shifei Ding, Xiao Xu, Lili Guo, Ling Ding, Xindong Wu,
- Abstract要約: 我々はSynC(Syngistic Deep Graph Clustering Network)というグラフクラスタリングフレームワークを提案する。
本稿では,構造拡張を導くための高品質な埋め込みを実現するために,TIGAE (Transform Input Graph Auto-Encoder) を設計する。
特に、表現学習と構造増強は重みを共有し、モデルパラメータの数を著しく減少させる。
- 参考スコア(独自算出の注目度): 14.569867830074292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Employing graph neural networks (GNNs) to learn cohesive and discriminative node representations for clustering has shown promising results in deep graph clustering. However, existing methods disregard the reciprocal relationship between representation learning and structure augmentation. This study suggests that enhancing embedding and structure synergistically becomes imperative for GNNs to unleash their potential in deep graph clustering. A reliable structure promotes obtaining more cohesive node representations, while high-quality node representations can guide the augmentation of the structure, enhancing structural reliability in return. Moreover, the generalization ability of existing GNNs-based models is relatively poor. While they perform well on graphs with high homogeneity, they perform poorly on graphs with low homogeneity. To this end, we propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC). In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation. Then, we re-capture neighborhood representations on the augmented graph to obtain clustering-friendly embeddings and conduct self-supervised clustering. Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters. Additionally, we introduce a structure fine-tuning strategy to improve the model's generalization. Extensive experiments on benchmark datasets demonstrate the superiority and effectiveness of our method. The code is released on GitHub and Code Ocean.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)を用いて、クラスタリングのための凝集性および識別ノード表現を学習することは、ディープグラフクラスタリングにおいて有望な結果を示している。
しかし,既存の手法では,表現学習と構造強化の相互関係は無視されている。
本研究は,GNNが深層グラフクラスタリングの可能性を解き放つためには,埋め込みと構造を相乗的に拡張することが重要であることを示唆する。
信頼性の高い構造はより凝集性の高いノード表現の獲得を促進する一方、高品質なノード表現は構造の増大を導くことができ、見返りに構造的信頼性を高めることができる。
さらに、既存のGNNベースのモデルの一般化能力は比較的貧弱である。
それらは高い等質性を持つグラフではうまく機能するが、低い等質性を持つグラフでは不十分に機能する。
そこで我々はSynC(Syngistic Deep Graph Clustering Network)というグラフクラスタリングフレームワークを提案する。
本稿では,構造拡張を導くための高品質な埋め込みを実現するために,TIGAE (Transform Input Graph Auto-Encoder) を設計する。
次に、拡張グラフ上の近傍表現を再取得し、クラスタリングに親しみやすい埋め込みを取得し、自己教師付きクラスタリングを行う。
特に、表現学習と構造増強は重みを共有し、モデルパラメータの数を著しく減少させる。
さらに、モデルの一般化を改善するための構造微調整戦略を導入する。
ベンチマークデータセットの大規模な実験により,本手法の優位性と有効性を示す。
コードはGitHubとCode Oceanでリリースされている。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて最先端の結果を得た。
グラフクラスタリングのようなグラフ上の教師なしの問題は、GNNの進歩に対してより抵抗性があることが証明されている。
本稿では,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプール手法であるDeep Modularity Networks (DMoN)を紹介する。
論文 参考訳(メタデータ) (2020-06-30T15:30:49Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。