Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming
- URL: http://arxiv.org/abs/2007.00038v2
- Date: Thu, 2 Jul 2020 21:35:54 GMT
- Title: Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming
- Authors: Hamed Hojatian, Jeremy Nadal, Jean-Francois Frigon, Francois
Leduc-Primeau
- Abstract summary: Hybrid beamforming is a promising technique to reduce the complexity and cost of massive multiple-input multiple-output (MIMO) systems.
This paper proposes a novel RSSI-based unsupervised deep learning method to design the hybrid beamforming.
- Score: 1.290382979353427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid beamforming is a promising technique to reduce the complexity and cost
of massive multiple-input multiple-output (MIMO) systems while providing high
data rate. However, the hybrid precoder design is a challenging task requiring
channel state information (CSI) feedback and solving a complex optimization
problem. This paper proposes a novel RSSI-based unsupervised deep learning
method to design the hybrid beamforming in massive MIMO systems. Furthermore,
we propose i) a method to design the synchronization signal (SS) in initial
access (IA); and ii) a method to design the codebook for the analog precoder.
We also evaluate the system performance through a realistic channel model in
various scenarios. We show that the proposed method not only greatly increases
the spectral efficiency especially in frequency-division duplex (FDD)
communication by using partial CSI feedback, but also has near-optimal sum-rate
and outperforms other state-of-the-art full-CSI solutions.
Related papers
- Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems.
The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration.
In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly.
arXiv Detail & Related papers (2023-11-08T08:54:56Z) - Hybrid Knowledge-Data Driven Channel Semantic Acquisition and
Beamforming for Cell-Free Massive MIMO [6.010360758759109]
This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications.
We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2023-07-06T15:35:55Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
Hybrid multiple-input multiple-output (MIMO) systems implement part of their beamforming in analog and part in digital.
Recent years have witnessed a growing interest in using data-aided artificial intelligence (AI) tools for hybrid beamforming design.
This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design.
arXiv Detail & Related papers (2023-03-03T06:04:20Z) - Deep Learning for Hybrid Beamforming with Finite Feedback in GSM Aided
mmWave MIMO Systems [9.320559153486885]
Hybrid beamforming is widely recognized as an important technique for millimeter wave (mmWave) multiple input multiple output (MIMO) systems.
With the help of deep learning, the GSM hybrid beamformers are designed via unsupervised learning in an end-to-end way.
arXiv Detail & Related papers (2023-02-15T11:42:43Z) - Towards Efficient Subarray Hybrid Beamforming: Attention Network-based
Practical Feedback in FDD Massive MU-MIMO Systems [9.320559153486885]
This paper introduces a jointly optimized network for channel estimation and feedback.
Experiments show that the proposed network is over 10 times lighter at the resource-sensitive user equipment.
arXiv Detail & Related papers (2023-02-05T15:12:07Z) - PolarDenseNet: A Deep Learning Model for CSI Feedback in MIMO Systems [18.646674391114548]
We propose an AI-based CSI feedback based on an auto-encoder architecture that encodes the CSI at UE into a low-dimensional latent space and decodes it back at the base station.
Our simulation results show that the AI-based proposed architecture outperforms the state-of-the-art high-resolution linear combination codebook.
arXiv Detail & Related papers (2022-02-02T19:04:49Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - RSSI-Based Hybrid Beamforming Design with Deep Learning [4.037009782513272]
Hybrid beamforming is a promising technology for 5G millimetre-wave communications.
implementation is challenging in practical multiple-input multiple-output systems.
Deep learning method is proposed to perform associated optimization with reasonable learning.
arXiv Detail & Related papers (2020-03-12T22:22:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.