論文の概要: Tensor Estimation with Nearly Linear Samples Given Weak Side Information
- arxiv url: http://arxiv.org/abs/2007.00736v3
- Date: Sat, 19 Oct 2024 13:34:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:52.932984
- Title: Tensor Estimation with Nearly Linear Samples Given Weak Side Information
- Title(参考訳): 弱側情報を考慮したニアリニアサンプルによるテンソル推定
- Authors: Christina Lee Yu, Xumei Xi,
- Abstract要約: 弱側情報はサンプルを$O(n)$に減らすのに十分であることを示す。
我々は、この側情報を利用して、任意の小さな定数$kappa > 0$に対して$O(n1+kappa)$サンプルを持つ一貫した推定子を生成するアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 5.69361786082969
- License:
- Abstract: Tensor completion exhibits an interesting computational-statistical gap in terms of the number of samples needed to perform tensor estimation. While there are only $\Theta(tn)$ degrees of freedom in a $t$-order tensor with $n^t$ entries, the best known polynomial time algorithm requires $O(n^{t/2})$ samples in order to guarantee consistent estimation. In this paper, we show that weak side information is sufficient to reduce the sample complexity to $O(n)$. The side information consists of a weight vector for each of the modes which is not orthogonal to any of the latent factors along that mode; this is significantly weaker than assuming noisy knowledge of the subspaces. We provide an algorithm that utilizes this side information to produce a consistent estimator with $O(n^{1+\kappa})$ samples for any small constant $\kappa > 0$. We also provide experiments on both synthetic and real-world datasets that validate our theoretical insights.
- Abstract(参考訳): テンソル完了は、テンソル推定を行うのに必要なサンプルの数の観点から、興味深い計算統計的ギャップを示す。
$t$-次テンソルには$\Theta(tn)$自由度しか存在しないが、最もよく知られている多項式時間アルゴリズムは、一貫した推定を保証するために$O(n^{t/2})$サンプルを必要とする。
本稿では,サンプルの複雑さを$O(n)$に抑えるのに,弱い側情報が十分であることを示す。
側情報は、各モードの重みベクトルからなり、そのモードに沿ったどの潜伏因子とも直交しない。
我々は、この側情報を利用して、任意の小さな定数$\kappa > 0$に対して$O(n^{1+\kappa})$サンプルを用いた一貫した推定子を生成するアルゴリズムを提供する。
また、我々の理論的洞察を検証する合成と実世界の両方のデータセットの実験も行います。
関連論文リスト
- Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
ランク1テンソルを$otimes_i=1N mathbbRd$で完了する際のサンプルと計算複雑性を再考する。
本稿では,一対のランダム線形系上で,ガウス・ヨルダンに相当するアルゴリズムを許容する問題のキャラクタリゼーションを提案する。
論文 参考訳(メタデータ) (2024-08-10T04:26:19Z) - Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
我々は,帯域幅フィードバックを用いたマルチクラスPAC学習について検討し,入力を$K$ラベルの1つに分類し,予測されたラベルが正しいか否かに制限する。
我々の主な貢献は、問題の無知な$(varepsilon,delta)$PACバージョンのための新しい学習アルゴリズムを設計することである。
論文 参考訳(メタデータ) (2024-06-18T08:54:04Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
論文 参考訳(メタデータ) (2024-02-21T19:55:01Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
そこで本研究では, 部分的に破損したサンプルの集合から, k$-sparse平均を推定することを目的とする, 頑健な平均推定問題について検討する。
両課題を適度な条件下で克服する簡易平均推定器を提案する。
私たちのメソッドは、スパーシティレベル$k$に関する事前の知識を必要としない。
論文 参考訳(メタデータ) (2023-05-24T16:02:28Z) - Sample Complexity Bounds for Learning High-dimensional Simplices in
Noisy Regimes [5.526935605535376]
ノイズの多いサンプルから単純さを学習するために、サンプルの複雑さが結びついているのがわかります。
我々は、$mathrmSNRgeOmegaleft(K1/2right)$ である限り、ノイズのないシステムのサンプルの複雑さは、ノイズのないケースのそれと同じ順序であることを示す。
論文 参考訳(メタデータ) (2022-09-09T23:35:25Z) - Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures [9.053430799456587]
有限混合系における非パラメトリック分布の学習問題について検討する。
このようなモデルにおける成分分布を学習するために、サンプルの複雑さに厳密な境界を定めている。
論文 参考訳(メタデータ) (2022-03-28T23:53:48Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - The Complexity of Sparse Tensor PCA [1.90365714903665]
1leq leq k$の場合、我々のアルゴリズムは信号対雑音比$lambda geq tildemathcalO (sqrtt cdot (k/t)p/2)$のスパースベクトルを時間内に回収する。
PCAの制限されたケースでさえ、既知のアルゴリズムは、$lambda geq tildemathcalO(k cdot r)のスパースベクトルのみを復元する一方、我々のアルゴリズムは$lambda geを必要とする。
論文 参考訳(メタデータ) (2021-06-11T10:57:00Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。