Incremental Bayesian tensor learning for structural monitoring data
imputation and response forecasting
- URL: http://arxiv.org/abs/2007.00790v3
- Date: Fri, 17 Jul 2020 01:12:38 GMT
- Title: Incremental Bayesian tensor learning for structural monitoring data
imputation and response forecasting
- Authors: Pu Ren and Xinyu Chen and Lijun Sun and Hao Sun
- Abstract summary: This paper presents an Bayesian tensor learning method for reconstruction of missing sensor data intemporal and structural response.
The performance of the proposed approach is validated on continuous field-sensing data of a concrete bridge.
The results indicate that the proposed tensor learning approach is accurate and robust even in the presence of large rates of random missing, structured missing and their combination.
- Score: 18.919194955756396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been increased interest in missing sensor data imputation, which is
ubiquitous in the field of structural health monitoring (SHM) due to
discontinuous sensing caused by sensor malfunction. To address this fundamental
issue, this paper presents an incremental Bayesian tensor learning method for
reconstruction of spatiotemporal missing data in SHM and forecasting of
structural response. In particular, a spatiotemporal tensor is first
constructed followed by Bayesian tensor factorization that extracts latent
features for missing data imputation. To enable structural response forecasting
based on incomplete sensing data, the tensor decomposition is further
integrated with vector autoregression in an incremental learning scheme. The
performance of the proposed approach is validated on continuous field-sensing
data (including strain and temperature records) of a concrete bridge, based on
the assumption that strain time histories are highly correlated to temperature
recordings. The results indicate that the proposed probabilistic tensor
learning approach is accurate and robust even in the presence of large rates of
random missing, structured missing and their combination. The effect of rank
selection on the imputation and prediction performance is also investigated.
The results show that a better estimation accuracy can be achieved with a
higher rank for random missing whereas a lower rank for structured missing.
Related papers
- Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization [0.0]
We present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors.
The framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts.
It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy.
arXiv Detail & Related papers (2024-08-21T06:04:02Z) - Uncertainty-Aware Deep Attention Recurrent Neural Network for
Heterogeneous Time Series Imputation [0.25112747242081457]
Missingness is ubiquitous in multivariate time series and poses an obstacle to reliable downstream analysis.
We propose DEep Attention Recurrent Imputation (Imputation), which jointly estimates missing values and their associated uncertainty.
Experiments show that I surpasses the SOTA in diverse imputation tasks using real-world datasets.
arXiv Detail & Related papers (2024-01-04T13:21:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Harmless interpolation in regression and classification with structured
features [21.064512161584872]
Overparametrized neural networks tend to perfectly fit noisy training data yet generalize well on test data.
We present a general and flexible framework for upper bounding regression and classification risk in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-11-09T15:12:26Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Online Tensor-Based Learning for Multi-Way Data [1.0953917735844645]
A new efficient tensor-based feature extraction, named NeSGD, is proposed for online $CANDECOMP/PARAFAC$ decomposition.
Results show that the proposed methods significantly improved the classification error rates, were able to assimilate the changes in the positive data distribution over time, and maintained a high predictive accuracy in all case studies.
arXiv Detail & Related papers (2020-03-10T02:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.