論文の概要: Posterior Adaptation With New Priors
- arxiv url: http://arxiv.org/abs/2007.01386v4
- Date: Tue, 25 Jan 2022 13:26:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 12:57:10.446489
- Title: Posterior Adaptation With New Priors
- Title(参考訳): 新しい前兆による後方適応
- Authors: Jim Davis
- Abstract要約: 我々は、テスト例のデータを元のクラス後部とデータセット前部から復元できるユニークな(スケールまで)ソリューションが可能であることを証明した。
復元された確率と一連の新しい先行条件を考えると、後部はベイズの規則を用いて再計算され、新しい先行条件の影響を反映することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification approaches based on the direct estimation and analysis of
posterior probabilities will degrade if the original class priors begin to
change. We prove that a unique (up to scale) solution is possible to recover
the data likelihoods for a test example from its original class posteriors and
dataset priors. Given the recovered likelihoods and a set of new priors, the
posteriors can be re-computed using Bayes' Rule to reflect the influence of the
new priors. The method is simple to compute and allows a dynamic update of the
original posteriors.
- Abstract(参考訳): 後方確率の直接推定と解析に基づく分類アプローチは、元のクラスプリエントが変化し始めると劣化する。
我々は、テスト例のデータを元のクラス後部とデータセット前部から復元できるユニークな(スケールまで)ソリューションが可能であることを証明した。
復元された確率と一連の新しい先行条件を考えると、後部はベイズの規則を用いて再計算され、新しい先行条件の影響を反映することができる。
この方法は計算が簡単で、元の後部の動的更新を可能にする。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems [39.58317527488534]
データ駆動型人口レベルの分布は、逆問題における単純なパラメトリック先行よりも魅力的な選択肢として現れている。
これらのモデルをトレーニングするために、基礎となるデータ生成プロセスから独立した、同一に分散されたサンプルを取得することは困難である。
本研究は, 事前分布の不特定から, 更新された分布が, 人口レベルの分布に徐々に近づきつつあることを示す。
論文 参考訳(メタデータ) (2024-07-24T22:39:27Z) - Reducing the cost of posterior sampling in linear inverse problems via task-dependent score learning [5.340736751238338]
前方マッピングの評価は, 後部サンプル生成時に完全に回避可能であることを示す。
この観測は、最近導入された無限次元拡散モデルの枠組みに一般化されることを証明している。
論文 参考訳(メタデータ) (2024-05-24T15:33:27Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Score-Based Diffusion Models as Principled Priors for Inverse Imaging [46.19536250098105]
本稿では,スコアに基づく拡散モデルを原理化された画像優先モデルに変換することを提案する。
本稿では, この確率関数を変分推論に用いることにより, 後部から試料を抽出する方法を示す。
論文 参考訳(メタデータ) (2023-04-23T21:05:59Z) - Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative
Priors [59.93972277761501]
我々は,教師付きあるいは自己指導型アプローチにより,ソースタスクから高い情報的後部を学習できることを実証した。
このシンプルなモジュラーアプローチは、様々な下流の分類とセグメンテーションタスクにおいて、大幅なパフォーマンス向上と、よりデータ効率のよい学習を可能にする。
論文 参考訳(メタデータ) (2022-05-20T16:19:30Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Adaptive Reordering Sampler with Neurally Guided MAGSAC [63.139445467355934]
そこで我々は, 常に不整数のみを構成する確率が最も高い試料を選定する頑健な推定器のための新しいサンプリング器を提案する。
反復が失敗すると、イリヤ確率はベイズ的アプローチによって原則的に更新される。
幾何的に妥当な方法で、あらゆる種類の特徴に対して推定できる配向とスケールを利用する新しい損失を導入する。
論文 参考訳(メタデータ) (2021-11-28T10:16:38Z) - The Hitchhiker's Guide to Prior-Shift Adaptation [41.4341627937948]
本稿では,混乱行列に基づく事前推定手法の既知の問題に対処する新しい手法を提案する。
きめ細かい画像分類データセットの実験は、事前シフト推定のベストプラクティスに関する洞察を与える。
自然にバランスの取れない2つのタスクにベストプラクティスを適用すると、Webcrawledイメージと植物種分類から学習することで、それぞれ1.1%と3.4%の認識精度が向上した。
論文 参考訳(メタデータ) (2021-06-22T11:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。