Numerical detection of Gaussian entanglement and its application to the
identification of bound entangled Gaussian states
- URL: http://arxiv.org/abs/2007.01731v1
- Date: Fri, 3 Jul 2020 14:53:58 GMT
- Title: Numerical detection of Gaussian entanglement and its application to the
identification of bound entangled Gaussian states
- Authors: Shan Ma and Shibei Xue and Yu Guo and Chuan-Cun Shu
- Abstract summary: We show that the separability problem can be cast as an equivalent problem of determining the feasibility of a set of linear matrix inequalities.
We show that the proposed method can be used to identify bound entangled Gaussian states that could be simple enough to be producible in quantum optics.
- Score: 2.4298571485464913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a numerical method for solving the separability problem of
Gaussian quantum states in continuous-variable quantum systems. We show that
the separability problem can be cast as an equivalent problem of determining
the feasibility of a set of linear matrix inequalities. Thus, it can be
efficiently solved using existent numerical solvers. We apply this method to
the identification of bound entangled Gaussian states. We show that the
proposed method can be used to identify bound entangled Gaussian states that
could be simple enough to be producible in quantum optics.
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Finite-element assembly approach of optical quantum walk networks [39.58317527488534]
We present a finite-element approach for computing the aggregate scattering matrix of a network of linear coherent scatterers.
Unlike traditional finite-element methods in optics, this method does not directly solve Maxwell's equations.
arXiv Detail & Related papers (2024-05-14T18:04:25Z) - Exact Numerical Solution of Stochastic Master Equations for Conditional
Spin Squeezing [6.824341405962008]
We present an exact numerical solution of conditional spin squeezing equations for systems with identical atoms.
We demonstrate that the spin squeezing can be vividly illustrated by the Gaussian-like distribution of the collective density matrix elements.
arXiv Detail & Related papers (2024-02-04T14:03:42Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Large-Scale Quantum Separability Through a Reproducible Machine Learning
Lens [5.499796332553708]
The quantum separability problem consists in deciding whether a bipartite density matrix is entangled or separable.
We propose a machine learning pipeline for finding approximate solutions for this NP-hard problem in large-scale scenarios.
arXiv Detail & Related papers (2023-06-15T18:53:26Z) - Matched entanglement witness criteria for continuous variables [11.480994804659908]
We use quantum entanglement witnesses derived from Gaussian operators to study the separable criteria of continuous variable states.
This opens a way for precise detection of non-Gaussian entanglement.
arXiv Detail & Related papers (2022-08-26T03:45:00Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Deterministic Preparation of Non-Gaussian Quantum States: Applications
in Quantum Information Protocols [0.0]
We present a scheme that can prepare non-Gaussian quantum states on-demand, by applying a unitary transformation.
The resulting state exhibits a quantum vortex structure in quadrature space, confirming its non-Gaussian nature.
Such non-Gaussian quantum state also reveals increased entanglement content, as quantified by the Logarithmic Negativity and the Wigner function negative volume.
arXiv Detail & Related papers (2021-10-07T05:42:27Z) - Quantum impurity models using superpositions of fermionic Gaussian
states: Practical methods and applications [0.0]
We present a practical approach for performing a variational calculation based on non-orthogonal fermionic Gaussian states.
Our method is based on approximate imaginary-time equations of motion that decouple the dynamics of each state forming the ansatz.
We also study the screening cloud of the two-channel Kondo model, a problem difficult to tackle using existing numerical tools.
arXiv Detail & Related papers (2021-05-03T18:00:08Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.