論文の概要: Addressing the interpretability problem for deep learning using many
valued quantum logic
- arxiv url: http://arxiv.org/abs/2007.01819v1
- Date: Thu, 2 Jul 2020 15:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 14:00:10.449242
- Title: Addressing the interpretability problem for deep learning using many
valued quantum logic
- Title(参考訳): 多値量子論理を用いた深層学習における解釈可能性問題への取り組み
- Authors: Swapnil Nitin Shah
- Abstract要約: 本稿では、機械学習、量子計算、量子場理論の概念を用いて、多くの値を持つ量子論理系が、畳み込みディープ・リーフ・ネットワークと呼ばれる特定の生成的深層学習モデルにおいて自然にどのように出現するかを示す。
計算効率を損なうことなく、多くの価値ある量子論理系の解釈可能性を備えたディープラーニングモデルを構築するための堅牢な理論的枠組みを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are widely used for various industrial and scientific
applications. Even though these models have achieved considerable success in
recent years, there exists a lack of understanding of the rationale behind
decisions made by such systems in the machine learning community. This problem
of interpretability is further aggravated by the increasing complexity of such
models. This paper utilizes concepts from machine learning, quantum computation
and quantum field theory to demonstrate how a many valued quantum logic system
naturally arises in a specific class of generative deep learning models called
Convolutional Deep Belief Networks. It provides a robust theoretical framework
for constructing deep learning models equipped with the interpretability of
many valued quantum logic systems without compromising their computing
efficiency.
- Abstract(参考訳): 深層学習モデルは様々な産業や科学的応用に広く利用されている。
これらのモデルは近年でかなりの成功を収めてきたが、機械学習コミュニティにおけるそのようなシステムによる決定の背後にある理論的根拠の欠如がある。
この解釈可能性の問題は、そのようなモデルの複雑さの増加によってさらに悪化する。
本稿では,機械学習,量子計算,量子場理論といった概念を用いて,畳み込み型深層信念ネットワークと呼ばれる生成型深層学習モデルにおいて,量子論理系が自然にどのように出現するかを実証する。
計算効率を損なうことなく、多くの価値ある量子論理系の解釈可能性を備えたディープラーニングモデルを構築するための堅牢な理論的枠組みを提供する。
関連論文リスト
- Digital-Analog Quantum Machine Learning [0.0]
機械学習アルゴリズムは、ますます多くのシステム、アプリケーション、技術、製品で広く使われている。
データの量の増加は 古典的な装置に困難をもたらします
量子システムは、特定のコンテキストにおける機械学習計算のスケールアップを可能にする方法を提供するかもしれない。
論文 参考訳(メタデータ) (2024-11-16T08:54:52Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Symmetry-invariant quantum machine learning force fields [0.0]
我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-19T16:15:53Z) - XpookyNet: Advancement in Quantum System Analysis through Convolutional Neural Networks for Detection of Entanglement [0.0]
量子システムに適したカスタムディープ畳み込みニューラルネットワーク(CNN)モデルを導入する。
提案するCNNモデルであるXpookyNetは,複素数データを扱うという課題を効果的に克服する。
まず第一に、量子状態は完全かつ部分的に絡み合った状態を調べるためにより正確に分類されるべきである。
論文 参考訳(メタデータ) (2023-09-07T17:52:43Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
分散量子ニューラルネットワークにおける技術の現状を概観する。
量子データセットの分布は、量子モデルの分布よりも古典的な分布と類似性があることが分かる。
論文 参考訳(メタデータ) (2022-11-14T00:27:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。