論文の概要: Logic, Language, and Calculus
- arxiv url: http://arxiv.org/abs/2007.02484v1
- Date: Mon, 6 Jul 2020 00:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 02:53:12.845711
- Title: Logic, Language, and Calculus
- Title(参考訳): 論理学、言語学、計算学
- Authors: Florian Richter
- Abstract要約: 言語とメタ言語の違いは論理解析にとって重要であるが、コンピュータ科学の分野ではまだ検討されていない。
メタ言語の推論関係(命題論理の計算のような)は自然言語の概念的関係を表現できないと論じられている。
- 参考スコア(独自算出の注目度): 8.475081627511166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The difference between object-language and metalanguage is crucial for
logical analysis, but has yet not been examined for the field of computer
science. In this paper the difference is examined with regard to inferential
relations. It is argued that inferential relations in a metalanguage (like a
calculus for propositional logic) cannot represent conceptual relations of
natural language. Inferential relations govern our concept use and
understanding. Several approaches in the field of Natural Language
Understanding (NLU) and Natural Language Inference (NLI) take this insight in
account, but do not consider, how an inference can be assessed as a good
inference. I present a logical analysis that can assesss the normative
dimension of inferences, which is a crucial part of logical understanding and
goes beyond formal understanding of metalanguages.
- Abstract(参考訳): オブジェクト指向とメタ言語の違いは論理解析に不可欠であるが、コンピュータ科学の分野ではまだ検討されていない。
本稿では, 推論関係に関して, 差異について考察する。
メタ言語の推論関係(命題論理の計算のような)は自然言語の概念的関係を表現できないと論じられている。
推論関係は私たちの概念の使用と理解を支配する。
自然言語理解(NLU)と自然言語推論(NLI)の分野におけるいくつかのアプローチは、この知見を考慮に入れているが、どのように推論を良い推論として評価できるかは考慮しない。
推論の規範的次元を評価する論理的分析法を提案する。これは論理的理解の重要な部分であり、メタ言語の形式的理解を超えたものである。
関連論文リスト
- A Complexity-Based Theory of Compositionality [53.025566128892066]
AIでは、構成表現は配布外一般化の強力な形式を可能にすることができる。
ここでは、構成性に関する直観を考慮し、拡張する構成性の公式な定義を提案する。
この定義は概念的には単純で量的であり、アルゴリズム情報理論に基礎を置いており、あらゆる表現に適用できる。
論文 参考訳(メタデータ) (2024-10-18T18:37:27Z) - A Note on an Inferentialist Approach to Resource Semantics [48.65926948745294]
「推論主義」とは、推論行動の観点で意味が与えられるという考え方である。
本稿では,「推論主義」が資源意味論の汎用的で表現力豊かな枠組みを実現する方法を示す。
論文 参考訳(メタデータ) (2024-05-10T14:13:21Z) - Enhancing Logical Reasoning in Large Language Models to Facilitate Legal
Applications [4.062485135201161]
大規模言語モデル(LLM)は人間の言語理解と生成をエミュレートしようとするが、論理的推論におけるその能力は限られている。
LLMに論理的推論を効果的に教えるにはどうすればよいのか?
論理的推論におけるLLMの能力の強化に焦点をあてて、法やその他の論理的な分野における適用性の拡大を目指す。
論文 参考訳(メタデータ) (2023-11-22T01:51:50Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Natural Language Reasoning, A Survey [16.80326702160048]
概念的には、NLPにおける自然言語推論の明確な定義を提供する。
我々はNLPにおける自然言語推論に関する総合的な文献レビューを行う。
論文はまた、多段階推論の強力なパラダイムである後方推論を特定し、考察する。
論文 参考訳(メタデータ) (2023-03-26T13:44:18Z) - Logical Reasoning over Natural Language as Knowledge Representation: A
Survey [43.29703101875716]
本稿では,自然言語を知識表現として,事前学習した言語モデルを推論として利用する論理推論の新しいパラダイムについて概説する。
この新たなパラダイムは、形式表現の多くの課題を軽減するだけでなく、エンドツーエンドのニューラルメソッドよりもアドバンテージを持つため、有望である。
論文 参考訳(メタデータ) (2023-03-21T16:56:05Z) - Language Models as Inductive Reasoners [125.99461874008703]
本稿では,帰納的推論のための新しいパラダイム(タスク)を提案し,自然言語の事実から自然言語規則を誘導する。
タスクのための1.2kルールファクトペアを含むデータセットDEERを作成し,ルールと事実を自然言語で記述する。
我々は、事前訓練された言語モデルが自然言語の事実から自然言語規則をいかに誘導できるかを、初めてかつ包括的な分析を行う。
論文 参考訳(メタデータ) (2022-12-21T11:12:14Z) - Higher-order Logic as Lingua Franca -- Integrating Argumentative
Discourse and Deep Logical Analysis [0.0]
本稿では,議論的言説の深い多元論的論理解析へのアプローチを提案する。
我々は古典的な高階論理に最先端の自動推論技術を用いる。
論文 参考訳(メタデータ) (2020-07-02T11:07:53Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。