論文の概要: Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer
- arxiv url: http://arxiv.org/abs/2007.03292v1
- Date: Tue, 7 Jul 2020 09:15:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 20:17:30.958713
- Title: Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer
- Title(参考訳): Divide-and-Rule:大腸癌の生存分析のための自己監督型学習
- Authors: Christian Abbet, and Inti Zlobec, and Behzad Bozorgtabar, and
Jean-Philippe Thiran
- Abstract要約: 本稿では,組織領域の表現とクラスタリングのメトリクスを学習し,その基盤となるパターンを学習する自己教師型学習手法を提案する。
提案手法は, 患者結果予測の過度な適合を避けるために, 線形予測器の恩恵を受けることができることを示す。
- 参考スコア(独自算出の注目度): 9.431791041887957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the long-term rapid increase in incidences of colorectal cancer (CRC),
there is an urgent clinical need to improve risk stratification. The
conventional pathology report is usually limited to only a few
histopathological features. However, most of the tumor microenvironments used
to describe patterns of aggressive tumor behavior are ignored. In this work, we
aim to learn histopathological patterns within cancerous tissue regions that
can be used to improve prognostic stratification for colorectal cancer. To do
so, we propose a self-supervised learning method that jointly learns a
representation of tissue regions as well as a metric of the clustering to
obtain their underlying patterns. These histopathological patterns are then
used to represent the interaction between complex tissues and predict clinical
outcomes directly. We furthermore show that the proposed approach can benefit
from linear predictors to avoid overfitting in patient outcomes predictions. To
this end, we introduce a new well-characterized clinicopathological dataset,
including a retrospective collective of 374 patients, with their survival time
and treatment information. Histomorphological clusters obtained by our method
are evaluated by training survival models. The experimental results demonstrate
statistically significant patient stratification, and our approach outperformed
the state-of-the-art deep clustering methods.
- Abstract(参考訳): 大腸癌発症率(crc)の長期的増加に伴い,リスク階層化の改善が急務である。
従来の病理所見は,病理組織学的特徴に限られることが多い。
しかし、攻撃的腫瘍行動のパターンを記述するために用いられる腫瘍の微小環境のほとんどは無視されている。
本研究は,大腸癌の予後診断に有用である癌組織領域の病理組織学的パターンを学習することを目的としている。
そこで本研究では,組織領域の表現とクラスタリングのメトリクスを共同で学習し,その基盤となるパターンを学習する自己教師型学習手法を提案する。
これらの病理組織学的パターンは、複雑な組織間の相互作用を表現し、臨床結果を直接予測するために用いられる。
さらに, 提案手法は, 患者結果予測の過度な適合を避けるために, 線形予測器の恩恵を受けることができることを示す。
そこで本研究では, 374人の患者を振り返り, 生存時間と治療情報を含む, 良好な臨床病理学的データセットを提案する。
本手法により得られた組織学的クラスターを,訓練生存モデルにより評価した。
実験の結果,統計的に有意な階層化を示し,そのアプローチは最先端の深層クラスタリング法を上回った。
関連論文リスト
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Beyond attention: deriving biologically interpretable insights from
weakly-supervised multiple-instance learning models [2.639541396835675]
本稿では,高精細エンコーダによるタイルレベルのアテンションと予測スコアを組み合わせたPAWマップを提案する。
また, PAWマップと核分割マスクを統合することにより, 生物学的特徴のインスタンス化手法も導入する。
本手法により, 予後不良の予知を行う領域は, 腫瘍部位と同一位置にあることが判明した。
論文 参考訳(メタデータ) (2023-09-07T09:44:35Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Interpretable Prediction of Lung Squamous Cell Carcinoma Recurrence With
Self-supervised Learning [20.54948901510215]
肺扁平上皮癌(L SCC)は再発率と転移率が高い。
タイルレベルでの病理組織像全体(WSI)の表現を学習するための,新しい条件付き自己教師型学習(SSL)法を提案する。
患者レベルでの再発予測のための生存モデルの特徴として, 自己スーパービジョンから得られた表現とクラスタが使用される。
論文 参考訳(メタデータ) (2022-03-23T05:36:02Z) - Weakly-supervised learning for image-based classification of primary
melanomas into genomic immune subgroups [1.4585861543119112]
我々は,ギガピクセルH&E染色病理スライドを免疫サブグループに分類する深層学習モデルを開発した。
我々は、スライドレベルラベルのみを必要とするマルチインスタンス学習アプローチを活用し、注意機構を用いて、その分類に高い重要性を持つ領域をハイライトする。
論文 参考訳(メタデータ) (2022-02-23T13:57:35Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。