論文の概要: Multimodal Doctor-in-the-Loop: A Clinically-Guided Explainable Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer
- arxiv url: http://arxiv.org/abs/2505.01390v1
- Date: Fri, 02 May 2025 16:57:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:20.09024
- Title: Multimodal Doctor-in-the-Loop: A Clinically-Guided Explainable Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer
- Title(参考訳): マルチモーダルドップ・イン・ザ・ループ:非小細胞肺癌の病的反応を予測するための臨床ガイド付き説明可能なフレームワーク
- Authors: Alice Natalina Caragliano, Claudia Tacconi, Carlo Greco, Lorenzo Nibid, Edy Ippolito, Michele Fiore, Giuseppe Perrone, Sara Ramella, Paolo Soda, Valerio Guarrasi,
- Abstract要約: 本研究は,非小細胞肺癌に対するネオアジュバント治療中の病態応答を予測するために,マルチモーダル深層学習と固有eXplainable Artificial Intelligence技術を組み合わせた新しいアプローチを提案する。
既存の放射線学と一元的深層学習のアプローチの限界により、画像と臨床データを統合し、データモダリティ間の効率的な相互作用を可能にする中間融合戦略を導入する。
その結果、予測精度と説明可能性の向上が示され、臨床応用のための最適なデータ統合戦略に関する洞察が得られた。
- 参考スコア(独自算出の注目度): 0.7003240413492382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study proposes a novel approach combining Multimodal Deep Learning with intrinsic eXplainable Artificial Intelligence techniques to predict pathological response in non-small cell lung cancer patients undergoing neoadjuvant therapy. Due to the limitations of existing radiomics and unimodal deep learning approaches, we introduce an intermediate fusion strategy that integrates imaging and clinical data, enabling efficient interaction between data modalities. The proposed Multimodal Doctor-in-the-Loop method further enhances clinical relevance by embedding clinicians' domain knowledge directly into the training process, guiding the model's focus gradually from broader lung regions to specific lesions. Results demonstrate improved predictive accuracy and explainability, providing insights into optimal data integration strategies for clinical applications.
- Abstract(参考訳): 本研究は,非小細胞肺癌に対するネオアジュバント治療中の病態応答を予測するために,マルチモーダル深層学習と固有eXplainable Artificial Intelligence技術を組み合わせた新しいアプローチを提案する。
既存の放射線学と一元的深層学習のアプローチの限界により、画像と臨床データを統合し、データモダリティ間の効率的な相互作用を可能にする中間融合戦略を導入する。
提案手法は, 臨床医の領域知識を直接トレーニングプロセスに埋め込むことにより, より広い肺領域から特定の病変まで, モデルの焦点を徐々に導き, 臨床関連性を高めるものである。
その結果、予測精度と説明可能性の向上が示され、臨床応用のための最適なデータ統合戦略に関する洞察が得られた。
関連論文リスト
- Doctor-in-the-Loop: An Explainable, Multi-View Deep Learning Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer [0.6800826356148091]
非小細胞肺癌(NSCLC)はいまだに世界的な健康上の課題である。
専門家主導のドメイン知識と説明可能な人工知能技術を統合する新しいフレームワークであるDoctor-in-the-Loopを提案する。
アプローチでは段階的なマルチビュー戦略を採用し,より広いコンテキスト特徴からより微細で病変特異的な詳細まで,モデルの焦点を段階的に洗練する。
論文 参考訳(メタデータ) (2025-02-21T16:35:30Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
非小細胞肺癌(NSCLC)における患者生存予測のためのモダリティ特異的知識の統合を目的としたマルチモーダル核融合パイプラインを提案する。
組織画像データとRNA-seqデータのみを用いてc-index0.5772と0.5885を達成した単一モダリティと比較して, 提案した融合法はc-index0.6587を達成した。
論文 参考訳(メタデータ) (2023-08-18T21:42:52Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
非小細胞肺癌に対する放射線治療成績を予測するため, マルチモーダルレイトフュージョン法を開発した。
実験により、AUCが90.9%ドルと同等のマルチモーダルパラダイムが、各ユニモーダルアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-04-26T16:32:52Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer [9.431791041887957]
本稿では,組織領域の表現とクラスタリングのメトリクスを学習し,その基盤となるパターンを学習する自己教師型学習手法を提案する。
提案手法は, 患者結果予測の過度な適合を避けるために, 線形予測器の恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T09:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。