論文の概要: Meta Corrupted Pixels Mining for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2007.03538v1
- Date: Tue, 7 Jul 2020 15:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 20:10:24.187491
- Title: Meta Corrupted Pixels Mining for Medical Image Segmentation
- Title(参考訳): 医用画像分割のためのメタ崩壊画素マイニング
- Authors: Jixin Wang, Sanping Zhou, Chaowei Fang, Le Wang, Jinjun Wang
- Abstract要約: 医用画像のセグメンテーションでは、正確なピクセルレベルのアノテーションを取得するのは非常に困難で費用がかかる。
本稿では,メタマスクネットワークに基づく新しいMeta Corrupted Pixels Mining (MCPM)法を提案する。
本手法は,分割ネットワーク学習における各画素の重要性を評価するために,重み付けマップを自動的に推定することを目的としている。
- 参考スコア(独自算出の注目度): 30.140008860735062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have achieved satisfactory performance in piles of
medical image analysis tasks. However the training of deep neural network
requires a large amount of samples with high-quality annotations. In medical
image segmentation, it is very laborious and expensive to acquire precise
pixel-level annotations. Aiming at training deep segmentation models on
datasets with probably corrupted annotations, we propose a novel Meta Corrupted
Pixels Mining (MCPM) method based on a simple meta mask network. Our method is
targeted at automatically estimate a weighting map to evaluate the importance
of every pixel in the learning of segmentation network. The meta mask network
which regards the loss value map of the predicted segmentation results as
input, is capable of identifying out corrupted layers and allocating small
weights to them. An alternative algorithm is adopted to train the segmentation
network and the meta mask network, simultaneously. Extensive experimental
results on LIDC-IDRI and LiTS datasets show that our method outperforms
state-of-the-art approaches which are devised for coping with corrupted
annotations.
- Abstract(参考訳): 深層ニューラルネットワークは、医療画像解析タスクの山で十分な性能を達成している。
しかし、ディープニューラルネットワークのトレーニングには、高品質なアノテーションを備えた大量のサンプルが必要である。
医用画像のセグメンテーションでは、正確なピクセルレベルのアノテーションを取得するのは非常に困難で費用がかかる。
そこで本研究では, 単純なメタマスクネットワークに基づくMeta Corrupted Pixels Mining (MCPM) 手法を提案する。
本手法は,分割ネットワーク学習における各画素の重要性を評価するために,重み付けマップを自動的に推定することを目的としている。
予測されたセグメンテーション結果の損失値マップを入力とみなすメタマスクネットワークは、破損した層を識別し、小さな重みを割り当てることができる。
セグメンテーションネットワークとメタマスクネットワークを同時に訓練する別のアルゴリズムが採用されている。
LIDC-IDRIとLiTSデータセットの大規模な実験結果から,この手法は劣化したアノテーションに対処するために考案された最先端の手法よりも優れていることが示された。
関連論文リスト
- Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images [5.3882963853819845]
事前自己アクティベーションモジュール(PSM)を用いた自己教師型学習手法を提案する。
PSMは入力画像から自己活性化マップを生成し、ラベル付けコストを回避し、下流タスク用の擬似マスクを生成する。
他の完全教師付き・弱教師付き手法と比較して,本手法は手動アノテーションを使わずに競争性能を達成できる。
論文 参考訳(メタデータ) (2022-10-14T14:34:26Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
画像やビデオにおける火の局所化は、火災事故に対処するための自律システムにとって重要なステップである。
我々は,ネットワークのトレーニングに画像ラベルのみを使用する,画像中の火の弱い制御セグメント化について検討する。
CNNの中間層における特徴量の平均値は,2値セグメンテーション問題である火災セグメンテーションの場合,従来のクラスアクティベーションマッピング(CAM)法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-16T11:56:28Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
本研究では,スムーズかつロバストな画像分割を実現するために,空間拘束型深部畳み込みニューラルネットワーク(DCNN)を提案する。
提案手法は神経線維分節に対する角膜共焦点顕微鏡(CCM)画像に基づいて評価された。
論文 参考訳(メタデータ) (2020-04-20T16:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。