論文の概要: Incorporating prior knowledge about structural constraints in model
identification
- arxiv url: http://arxiv.org/abs/2007.04030v1
- Date: Wed, 8 Jul 2020 11:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 10:11:42.653449
- Title: Incorporating prior knowledge about structural constraints in model
identification
- Title(参考訳): モデル同定における構造制約に関する事前知識の導入
- Authors: Deepak Maurya, Sivadurgaprasad Chinta, Abhishek Sivaram and
Raghunathan Rengaswamy
- Abstract要約: このような部分的情報を利用してより良い推定値を生成するモデル同定手法を提案する。
具体的には,PCAなどの既存手法を即興的に活用する構造主成分分析(SPCA)を提案する。
提案手法の有効性は, 合成ケーススタディおよび工業ケーススタディを用いて実証した。
- 参考スコア(独自算出の注目度): 1.376408511310322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model identification is a crucial problem in chemical industries. In recent
years, there has been increasing interest in learning data-driven models
utilizing partial knowledge about the system of interest. Most techniques for
model identification do not provide the freedom to incorporate any partial
information such as the structure of the model. In this article, we propose
model identification techniques that could leverage such partial information to
produce better estimates. Specifically, we propose Structural Principal
Component Analysis (SPCA) which improvises over existing methods like PCA by
utilizing the essential structural information about the model. Most of the
existing methods or closely related methods use sparsity constraints which
could be computationally expensive. Our proposed method is a wise modification
of PCA to utilize structural information. The efficacy of the proposed approach
is demonstrated using synthetic and industrial case-studies.
- Abstract(参考訳): モデル同定は化学産業において重要な問題である。
近年,関心システムに関する部分的知識を活用したデータ駆動モデル学習への関心が高まっている。
モデル識別のためのほとんどの技術は、モデルの構造のような部分的な情報を組み込む自由を与えていない。
本稿では,そのような部分的情報を利用してより良い推定値を生成するモデル同定手法を提案する。
具体的には,本モデルに関する本質的な構造情報を利用して,pcaなどの既存手法を改良した構造主成分分析(spca)を提案する。
既存の手法や近縁な手法のほとんどは、計算コストのかかる空間的制約を用いる。
提案手法は構造情報を利用するためのPCAの賢明な修正である。
提案手法の有効性を合成および工業ケーススタディーを用いて実証した。
関連論文リスト
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
データ駆動型モデルオーダーリダクションを用いた代理モデルのような従来の手法は、高忠実度モデルをより広く利用するために用いられる。
ヒト上腕部の複素有限要素モデルに対する代理モデル手法の利点を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:14:34Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Artefact Retrieval: Overview of NLP Models with Knowledge Base Access [18.098224374478598]
本稿では,人工物の種類(知識ベースから抽出した項目),検索機構,およびこれらの人工物がモデルに融合する方法を体系的に記述する。
言語モデルに焦点が当てられているが、質問応答、事実チェック、対話モデルもこのシステムにどのように適合するかを示す。
論文 参考訳(メタデータ) (2022-01-24T13:15:33Z) - Explanation of Machine Learning Models Using Shapley Additive
Explanation and Application for Real Data in Hospital [0.11470070927586014]
本稿では,機械学習モデルの解釈可能性向上のための2つの新しい手法を提案する。
本稿では,A/G比が脳梗塞の重要な予後因子であることを示す。
論文 参考訳(メタデータ) (2021-12-21T10:08:31Z) - Provably Robust Model-Centric Explanations for Critical Decision-Making [14.367217955827002]
データ中心の手法は、限られた実用性についての脆い説明をもたらす可能性がある。
しかし、モデル中心のフレームワークは、実際にAIモデルを使用するリスクに関する実用的な洞察を提供することができる。
論文 参考訳(メタデータ) (2021-10-26T18:05:49Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Value of Information Analysis via Active Learning and Knowledge Sharing
in Error-Controlled Adaptive Kriging [7.148732567427574]
本稿では,情報の価値(VoI)分析のための最初のサロゲートベースのフレームワークを提案する。
複数の関心事の可能性を更新するために、サロゲートモデル間の観測から平等な情報を共有することができる。
トラスブリッジの負荷試験を含む最適決定問題に対して,提案手法を適用した。
論文 参考訳(メタデータ) (2020-02-06T16:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。