論文の概要: Improving the Robustness of Trading Strategy Backtesting with Boltzmann
Machines and Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2007.04838v1
- Date: Thu, 9 Jul 2020 14:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 04:08:57.066960
- Title: Improving the Robustness of Trading Strategy Backtesting with Boltzmann
Machines and Generative Adversarial Networks
- Title(参考訳): Boltzmann MachinesとGenerative Adversarial Networksによる取引戦略バックテストのロバスト性向上
- Authors: Edmond Lezmi, Jules Roche, Thierry Roncalli, Jiali Xu
- Abstract要約: この記事では、市場ジェネレータを構築するための機械学習モデルの使用について説明する。
基礎となる考え方は、統計的性質が金融市場に見られるものと同じである人工多次元金融時系列をシミュレートすることである。
そこで本稿では,バックテスト統計の確率分布を推定する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article explores the use of machine learning models to build a market
generator. The underlying idea is to simulate artificial multi-dimensional
financial time series, whose statistical properties are the same as those
observed in the financial markets. In particular, these synthetic data must
preserve the probability distribution of asset returns, the stochastic
dependence between the different assets and the autocorrelation across time.
The article proposes then a new approach for estimating the probability
distribution of backtest statistics. The final objective is to develop a
framework for improving the risk management of quantitative investment
strategies, in particular in the space of smart beta, factor investing and
alternative risk premia.
- Abstract(参考訳): この記事では、マーケットジェネレータ構築における機械学習モデルの利用について説明する。
基礎となる考え方は、統計的性質が金融市場に見られるものと同じである人工多次元金融時系列をシミュレートすることである。
特に、これらの合成データは資産返却の確率分布、異なる資産間の確率的依存と時間的自己相関を保存する必要がある。
そこで本稿では,バックテスト統計の確率分布を推定する新しい手法を提案する。
最後の目標は、定量的投資戦略、特にスマートベータ、ファクター投資、代替リスクプレアの分野におけるリスク管理を改善するためのフレームワークを開発することである。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Generalized Distribution Prediction for Asset Returns [0.9944647907864256]
本稿では,Long Short-Term Memory (LSTM) ネットワークを用いたQuantile-based methodを用いて,資産返却の分布を予測する新しい手法を提案する。
第1段階は資産特化特徴を用いた正規化資産返却量の予測に焦点を合わせ,第2段階は市場データを用いてこれらの予測をより広範な経済状況に適応させる。
論文 参考訳(メタデータ) (2024-10-15T15:31:44Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
本稿では、データを徐々に、そして継続的に明らかにする視点を採用する。
提案された戦略の性能は特定の市場で保証される。
定常市場及びエルゴード市場では、投資中の過去の市場情報に基づいて、真の条件分布を利用するいわゆるベイズ戦略は、実証的効用、シャープ比、成長率の観点からは、ほぼ確実に、条件分布に依存しない。
論文 参考訳(メタデータ) (2024-06-19T12:11:42Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
生成確率予測は、過去の時系列観測で与えられた条件付き確率分布に基づいて、将来の時系列サンプルを生成する。
本稿では、独立かつ同一に分散したイノベーションシーケンスを抽出する、弱いイノベーションオートエンコーダアーキテクチャと学習アルゴリズムを提案する。
弱いイノベーションシーケンスはベイズ的であり、弱イノベーションオートエンコーダが生成確率予測のための標準アーキテクチャとなることを示す。
論文 参考訳(メタデータ) (2024-02-21T15:23:21Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
既存の予測アプローチの多くは、効果的な意思決定に必要な深さを欠いて、単一ポイントの予測に焦点を当てている。
本稿では,不確実性をより効果的に定量化するために,ストック間隔予測のためのシーケンス生成を導入するRAGICを提案する。
RAGICのジェネレータには、情報投資家のリスク認識をキャプチャするリスクモジュールと、歴史的価格動向と季節性を考慮した時間モジュールが含まれている。
論文 参考訳(メタデータ) (2024-02-16T15:34:07Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
我々は、大量の商品を戦略的入札者に販売する収益を最大化する販売業者の問題を考える。
この設定の最適かつほぼ最適のメカニズムは、特徴付けや計算が難しいことで有名である。
論文 参考訳(メタデータ) (2023-10-11T20:34:17Z) - Risk Aware Benchmarking of Large Language Models [36.95053112313244]
本稿では,統計的に有意な基礎モデルの社会技術的リスクを定量的に評価するための分布的枠組みを提案する。
本試験における2次統計は,計量学や数理ファイナンスでよく用いられる平均リスクモデルと関連していることを示す。
筆者らは,本フレームワークを用いて,命令からのドリフトや有害なコンテンツの出力に関連するリスクに関する,さまざまな大規模言語モデルを比較した。
論文 参考訳(メタデータ) (2023-10-11T02:08:37Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Online Ensemble of Models for Optimal Predictive Performance with
Applications to Sector Rotation Strategy [0.0]
資産固有の要因は、一般的に金融リターンを予測し、資産固有のリスク・プレミアを定量化するために使用される。
予測性能を最適化するオンラインアンサンブルアルゴリズムを開発した。
当社のアンサンブルからの月次予測を利用して、市場を著しく上回るセクターローテーション戦略を策定する。
論文 参考訳(メタデータ) (2023-03-30T02:25:54Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。