論文の概要: A Neuro-inspired Theory of Joint Human-Swarm Interaction
- arxiv url: http://arxiv.org/abs/2007.04882v1
- Date: Thu, 9 Jul 2020 15:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 04:23:44.213327
- Title: A Neuro-inspired Theory of Joint Human-Swarm Interaction
- Title(参考訳): 神経にインスパイアされたヒト-スワーム相互作用の理論
- Authors: Jonas D. Hasbach, Maren Bennewitz
- Abstract要約: HSI(Human-Swarm Interaction)は、ロボット工学とヒューマンファクター工学の領域における積極的な研究課題である。
本稿では、認知システム工学の観点を適用し、HSIの神経誘発ジョイントシステム理論を導入する。
- 参考スコア(独自算出の注目度): 12.107259467873092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-swarm interaction (HSI) is an active research challenge in the realms
of swarm robotics and human-factors engineering. Here we apply a cognitive
systems engineering perspective and introduce a neuro-inspired joint systems
theory of HSI. The mindset defines predictions for adaptive, robust and
scalable HSI dynamics and therefore has the potential to inform human-swarm
loop design.
- Abstract(参考訳): HSI(Human-Swarm Interaction)は、ロボット工学とヒューマンファクター工学の領域における積極的な研究課題である。
本稿では、認知システム工学の観点を適用し、HSIの神経誘発ジョイントシステム理論を導入する。
この考え方は適応的で堅牢でスケーラブルなHSIダイナミクスの予測を定義しており、従って人間の警告ループ設計を知らせる可能性がある。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - ReGenNet: Towards Human Action-Reaction Synthesis [87.57721371471536]
我々は、人間と人間の相互作用の非対称、動的、同期、および詳細な性質を分析する。
本研究では,人間の行動に条件付けされた人間の反応を生成するための,最初のマルチセットヒト行動反応ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:33:06Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Neuroadaptation in Physical Human-Robot Collaboration [34.73541717674098]
我々は,pHRCのための新しいクローズドループニューラプティブフレームワークを実証した。
我々は,ロボット戦略に適応するために,強化学習の助けを借りて,認知コンフリクト情報をクローズループ方式で適用した。
実験の結果,クローズドループに基づくニューロアダプティブ・フレームワークは認知的対立のレベルを下げることができた。
論文 参考訳(メタデータ) (2023-09-30T12:16:24Z) - Human Comfortability Index Estimation in Industrial Human-Robot
Collaboration Task [3.0040661953201475]
我々はこの研究において、快適性指数(CI)と不快性指数(unCI)と呼んできた。
人間のロボット共同実験において, 主観的指標(サプライズ, 不安, 退屈, 落ち着き, 快適性)と生理的信号を収集した。
生理的信号からCI/unCIを推定するために,心電図 (ECG) , ガルバニック皮膚反応 (GSR) および瞳孔信号から時間特性を抽出した。
論文 参考訳(メタデータ) (2023-08-28T15:16:35Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Warmth and Competence to Predict Human Preference of Robot Behavior in
Physical Human-Robot Interaction [0.8594140167290099]
社会的認知は、ウォームスとコンピテンスの次元が、他の人間を特徴づける中心的かつ普遍的な次元であると仮定する。
The Robotic Social Attribute Scale (RoSAS)は、HRIに適した寸法の項目を提案し、視覚的観察研究で検証した。
我々は、すべてのRoSASおよびGodspeed次元の中で、ウォームスとコンピテンスが、異なるロボット行動間の人間の嗜好の最も重要な予測因子であることを発見した。
論文 参考訳(メタデータ) (2020-08-13T10:19:47Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観
本研究では,人-ロボットインタラクション実験のためのオープンソース手法であるテクスチュラルロボティクスライブラリ(NRL)を提案する。
人-ロボット間(ハイブリッド)が人間の科学研究に寄与する方法について論じる。
論文 参考訳(メタデータ) (2020-06-29T11:35:46Z) - Human Perception of Intrinsically Motivated Autonomy in Human-Robot
Interaction [2.485182034310304]
人間に生息する環境でロボットを使用する場合の課題は、人間同士の相互作用によって引き起こされる摂動に対して、魅力的だが堅牢な振る舞いを設計することである。
我々のアイデアは、ロボットに本質的なモチベーション(IM)を持たせることで、新しい状況に対処し、人間以外の真の社会的存在として現れるようにすることです。
本稿では、自律的に生成された振る舞いを相互に比較できる「ロボット学者」による研究設計について述べる。
論文 参考訳(メタデータ) (2020-02-14T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。