論文の概要: A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks
- arxiv url: http://arxiv.org/abs/2007.04979v1
- Date: Thu, 9 Jul 2020 17:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 03:04:15.041694
- Title: A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks
- Title(参考訳): コーディアル同期:マルチエージェント具体化タスクの限界ポリシーを超える
- Authors: Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik,
Aniruddha Kembhavi, Alexander Schwing
- Abstract要約: エージェントが協力して家具をリビングルームに移動させるという,新しいタスクFurnMoveを紹介した。
既存のタスクとは異なり、FurnMoveはエージェントが各タイミングで調整する必要がある。
既存の分散化されたアクションサンプリング手順は、表現力のある共同アクションポリシーを許さない。
SynC-policiesとCORDIALを用いて、我々のエージェントはFurnMoveで58%の完成率を達成する。
- 参考スコア(独自算出の注目度): 111.34055449929487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous agents must learn to collaborate. It is not scalable to develop a
new centralized agent every time a task's difficulty outpaces a single agent's
abilities. While multi-agent collaboration research has flourished in
gridworld-like environments, relatively little work has considered visually
rich domains. Addressing this, we introduce the novel task FurnMove in which
agents work together to move a piece of furniture through a living room to a
goal. Unlike existing tasks, FurnMove requires agents to coordinate at every
timestep. We identify two challenges when training agents to complete FurnMove:
existing decentralized action sampling procedures do not permit expressive
joint action policies and, in tasks requiring close coordination, the number of
failed actions dominates successful actions. To confront these challenges we
introduce SYNC-policies (synchronize your actions coherently) and CORDIAL
(coordination loss). Using SYNC-policies and CORDIAL, our agents achieve a 58%
completion rate on FurnMove, an impressive absolute gain of 25 percentage
points over competitive decentralized baselines. Our dataset, code, and
pretrained models are available at https://unnat.github.io/cordial-sync .
- Abstract(参考訳): 自律的なエージェントは協力することを学ぶ必要があります。
タスクの難しさが1つのエージェントの能力を上回る度に、新しい集中型エージェントを開発するのはスケーラビリティがない。
マルチエージェントコラボレーションの研究はグリッドワールドのような環境で盛んに行われているが、視覚的にリッチなドメインを考慮に入れた研究は比較的少ない。
そこで我々は,リビングルーム内の家具を目標に移動させるために,エージェントが協力して作業する新しいタスクFurnMoveを紹介した。
既存のタスクとは異なり、FurnMoveはエージェントが各タイミングで調整する必要がある。
既存の分散アクションサンプリング手順では,協調的な行動方針の表現が認められず,緊密な調整を必要とするタスクでは,失敗した行動の数が成功した行動を支配する。
これらの課題に対処するために、SynC-policies(行動の同期)とCORDIAL(コーディネーションロス)を導入します。
SynC-policiesとCORDIALを用いて、我々のエージェントはFurnMoveで58%の完成率を達成する。
私たちのデータセット、コード、事前トレーニングされたモデルは、https://unnat.github.io/cordial-sync で利用可能です。
関連論文リスト
- MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
本稿では,分散マルチエージェントコラボレーションのための新しいフレームワークであるMorphAgentを紹介する。
MorphAgentは3つの主要なメトリクスで最適化された自己進化エージェントプロファイルを使用している。
実験の結果,MorphAgentはタスク性能や要求の変化に対する適応性という点で従来の静的ロールMASよりも優れていた。
論文 参考訳(メタデータ) (2024-10-19T09:10:49Z) - Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots [1.1049608786515839]
本稿では,CATMiP(Cooperative and Asynchronous Transformer-based Mission Planning)フレームワークを提案する。
CatMiPはマルチエージェント強化学習を使用して、エージェントを異質なセンシング、モーション、アクティベーション能力で調整する。
ミッションの複雑さやコミュニケーションの制約に容易に適応し、さまざまな環境サイズやチーム構成にスケールします。
論文 参考訳(メタデータ) (2024-10-08T21:14:09Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalとコンセンサスに達するためのガイドである。
このような効率的なコンセンサス機構は、すべてのエージェントを協調して有用な将来状態に導くことができることを示す。
論文 参考訳(メタデータ) (2024-03-05T18:07:34Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - MACRPO: Multi-Agent Cooperative Recurrent Policy Optimization [17.825845543579195]
我々はtextitMulti-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO) と呼ばれる新しいマルチエージェントアクター批判手法を提案する。
我々は、批評家のネットワークアーキテクチャにおいてリカレント・レイヤを使用し、メタ・トラジェクトリを使用してリカレント・レイヤをトレーニングする新しいフレームワークを提案する。
連続的および離散的な行動空間を持つ3つの挑戦的マルチエージェント環境において,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-09-02T12:43:35Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。