論文の概要: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- arxiv url: http://arxiv.org/abs/2410.06372v1
- Date: Tue, 8 Oct 2024 21:14:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 06:09:19.651637
- Title: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- Title(参考訳): 移動ロボットの不均一チームのための協調的・非同期トランスフォーマーによるミッションプランニング
- Authors: Milad Farjadnasab, Shahin Sirouspour,
- Abstract要約: 本稿では,CATMiP(Cooperative and Asynchronous Transformer-based Mission Planning)フレームワークを提案する。
CatMiPはマルチエージェント強化学習を使用して、エージェントを異質なセンシング、モーション、アクティベーション能力で調整する。
ミッションの複雑さやコミュニケーションの制約に容易に適応し、さまざまな環境サイズやチーム構成にスケールします。
- 参考スコア(独自算出の注目度): 1.1049608786515839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coordinating heterogeneous teams of mobile robots for tasks such as search and rescue is highly challenging. This is due to the complexities of perception, decision making and planning in such environments, with agents' non-synchronous operation, constrained communication, and limited computational resources. This paper presents the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to effectively coordinate agents with heterogeneous sensing, motion, and actuation capabilities. The framework introduces a Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMD-POMDP) model to handle asynchronous decision-making among different agent classes via macro-actions. It also extends the Multi-Agent Transformer (MAT) architecture to facilitate distributed, ad hoc communication among the agents. CATMiP easily adapts to mission complexities and communication constraints, and scales to varying environment sizes and team compositions. Simulations demonstrate its scalability and ability to achieve cooperative mission objectives with two classes of explorer and rescuer agents, even under severe communication constraints. The code is available at https://github.com/mylad13/CATMiP.
- Abstract(参考訳): 捜索や救助などのタスクのために、移動ロボットの異質なチームを調整することは極めて困難である。
これは、エージェントの非同期操作、制約された通信、限られた計算資源を含む、そのような環境における知覚、意思決定、計画の複雑さに起因する。
本稿では,多エージェント強化学習(MARL)を利用した協調型・非同期型トランスフォーマーベースミッションプランニング(CATMiP)フレームワークを提案する。
このフレームワークは、マクロアクションを介して異なるエージェントクラス間の非同期決定を処理するために、クラスベースのマクロアクション分散部分観測可能なマルコフ決定プロセス(CMD-POMDP)モデルを導入している。
また、マルチエージェントトランスフォーマー(MAT)アーキテクチャを拡張し、エージェント間の分散アドホック通信を容易にする。
CATMiPはミッションの複雑さやコミュニケーションの制約に容易に適応し、さまざまな環境サイズやチーム構成にスケールする。
シミュレーションは、厳密な通信制約下であっても、探検家と救助隊員の2つのクラスで協調的なミッション目標を達成するためのスケーラビリティと能力を示す。
コードはhttps://github.com/mylad13/CATMiPで入手できる。
関連論文リスト
- Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
本稿では、グラフニューラルネットワーク(GNN)、深層強化学習(DRL)、マルチエージェント協調と集合タスク実行の強化のためのトランスフォーマーベースのメカニズムを統合する新しいフレームワークを提案する。
提案手法はGNNを用いて,適応グラフ構築によるエージェントエージェントとエージェントゴールの相互作用をモデル化し,制約付き通信下での効率的な情報集約と意思決定を可能にする。
論文 参考訳(メタデータ) (2025-04-11T01:46:18Z) - Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm [54.98788921815576]
我々は,textbfLocalityをベースとしたtextbfFactorized textbfMulti-Agent textbfActor-textbfCritic (Loc-FACMAC) という新しい協調型マルチエージェント強化学習法を提案する。
我々は、局所性の概念を批判的学習に統合し、トレーニング中に強く関連するロボットが分割を形成する。
提案手法は,局所的な報酬に着目し,分割型学習を活用して既存のアルゴリズムを改良し,学習効率と性能を向上させる。
論文 参考訳(メタデータ) (2025-03-24T16:00:16Z) - RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints [27.467048581838405]
埋め込み型マルチエージェントシステムに対する構成制約の概念を提案する。
異なるタイプの制約に合わせたインターフェースを設計し、物理的世界とのシームレスな対話を可能にします。
マルチエージェント操作のための最初のベンチマークであるRoboFactoryを紹介した。
論文 参考訳(メタデータ) (2025-03-20T17:58:38Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
現在のエージェントフレームワークは、シングルエージェント実行への依存に悩まされ、モジュール間通信が堅牢でないことが多い。
協調的なMARLにおける協調行動を可能にするための協調エージェントとして,大規模言語モデルを訓練するためのフレームワークを提案する。
伝搬ネットワークは、放送意図をチームメイト固有のコミュニケーションメッセージに変換し、指定されたチームメイトと関連する目標を共有する。
論文 参考訳(メタデータ) (2024-07-17T13:14:00Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
論文 参考訳(メタデータ) (2024-04-02T01:45:03Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Multi-Agent Reinforcement Learning for Pragmatic Communication and
Control [40.11766545693947]
本稿では,目標指向通信とネットワーク制御を組み合わせた統合設計を単一最適化モデルとして提案する。
通信システムと制御システムの合同訓練は、全体的な性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-02-28T08:30:24Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
任意のサイズの混合ロボットチームにおいて,動的役割割り当てと協調作業計画のための新しいアーキテクチャを提案する。
このアーキテクチャは、動作木(BT)に基づく集中型リアクティブかつモジュール型タスク非依存の計画手法を基盤としている。
MILPコストとして使用されるさまざまなメトリクスにより、アーキテクチャはコラボレーションの様々な側面を好むことができる。
論文 参考訳(メタデータ) (2023-01-19T12:30:56Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
本稿では,敵対的エージェント間コミュニケーションの存在下で,ロボットの戦略を効率的に調整するアルゴリズムを提案する。
ロボットは対象の場所について事前の知識を持っておらず、隣接するロボットのサブセットのみといつでも対話できると仮定される。
提案手法の有効性は, グリッドワールド環境のプロトタイプで実証した。
論文 参考訳(メタデータ) (2022-12-20T08:13:29Z) - Consolidating Kinematic Models to Promote Coordinated Mobile
Manipulations [96.03270112422514]
我々は,移動体ベース,アーム,移動体操作で操作する物体の運動学を統合する仮想キネマティックチェイン(VKC)を構築した。
移動操作タスクは、構築されたVKCの状態を変更して表現され、移動計画問題に変換することができる。
論文 参考訳(メタデータ) (2021-08-03T02:59:41Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
エージェントが協力して家具をリビングルームに移動させるという,新しいタスクFurnMoveを紹介した。
既存のタスクとは異なり、FurnMoveはエージェントが各タイミングで調整する必要がある。
既存の分散化されたアクションサンプリング手順は、表現力のある共同アクションポリシーを許さない。
SynC-policiesとCORDIALを用いて、我々のエージェントはFurnMoveで58%の完成率を達成する。
論文 参考訳(メタデータ) (2020-07-09T17:59:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。