論文の概要: A spectral algorithm for robust regression with subgaussian rates
- arxiv url: http://arxiv.org/abs/2007.06072v1
- Date: Sun, 12 Jul 2020 19:33:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:39:30.233280
- Title: A spectral algorithm for robust regression with subgaussian rates
- Title(参考訳): サブガウスレートを用いたロバスト回帰のためのスペクトルアルゴリズム
- Authors: Jules Depersin
- Abstract要約: 本研究では, 試料の分布に強い仮定がない場合の線形回帰に対する2次時間に対する新しい線形アルゴリズムについて検討する。
目的は、データが有限モーメントしか持たなくても最適な準ガウス誤差を達成できる手順を設計することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a new linear up to quadratic time algorithm for linear regression in
the absence of strong assumptions on the underlying distributions of samples,
and in the presence of outliers. The goal is to design a procedure which comes
with actual working code that attains the optimal sub-gaussian error bound even
though the data have only finite moments (up to $L_4$) and in the presence of
possibly adversarial outliers. A polynomial-time solution to this problem has
been recently discovered but has high runtime due to its use of Sum-of-Square
hierarchy programming. At the core of our algorithm is an adaptation of the
spectral method introduced for the mean estimation problem to the linear
regression problem. As a by-product we established a connection between the
linear regression problem and the furthest hyperplane problem. From a
stochastic point of view, in addition to the study of the classical quadratic
and multiplier processes we introduce a third empirical process that comes
naturally in the study of the statistical properties of the algorithm.
- Abstract(参考訳): 本研究では,試料の底面分布と異常値の存在に対する強い仮定を欠いた線形回帰のための新しい線形up to quadratic timeアルゴリズムについて検討した。
目標は、データに有限モーメント(最大$l_4$)と、潜在的に逆の外れ値が存在するにもかかわらず、最適なサブガウジアンエラーバウンドを達成する実際の動作コードを持つ手順を設計することである。
この問題に対する多項式時間解が最近発見されているが、Squareの階層プログラミングにSum-of-Squareを使っているためランタイムが高い。
本アルゴリズムの核となるのは,平均推定問題に導入したスペクトル法を線形回帰問題に適用する手法である。
副産物として,線形回帰問題と最短超平面問題との関係を確立した。
確率的観点から見ると、古典的二次過程と乗算過程の研究に加えて、アルゴリズムの統計的性質の研究において自然に現れる3つ目の経験的過程を導入する。
関連論文リスト
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
本稿では,2次近似の高次元スパースパラメータの統計的推定への応用について論じる。
提案アルゴリズムは, 回帰器分布の弱い仮定の下で, 推定誤差の最適収束を実現する。
論文 参考訳(メタデータ) (2022-10-23T23:23:23Z) - Shuffled linear regression through graduated convex relaxation [12.614901374282868]
シャッフル線形回帰問題は、入力と出力の対応が不明なデータセットにおける線形関係を復元することを目的としている。
この問題は、調査データを含む広範囲のアプリケーションで発生する。
後最大化目的関数に基づく線形回帰をシャッフルする新しい最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:33:48Z) - Robust Regression Revisited: Acceleration and Improved Estimation Rates [25.54653340884806]
強い汚染モデルの下で, 統計的回帰問題に対する高速アルゴリズムについて検討する。
目的は、逆向きに破損したサンプルを与えられた一般化線形モデル(GLM)を概ね最適化することである。
実行時や推定保証が改善された頑健な回帰問題に対して,ほぼ直線的な時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:21:56Z) - Linear regression with partially mismatched data: local search with
theoretical guarantees [9.398989897176953]
本稿では,予測と応答のペアが部分的に一致しない線形回帰の重要な変種について検討する。
最適化定式化を用いて、基礎となる回帰係数とミスマッチに対応する置換を同時に学習する。
我々は,局所探索アルゴリズムが線形速度でほぼ最適解に収束することを証明した。
論文 参考訳(メタデータ) (2021-06-03T23:32:12Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Piecewise linear regression and classification [0.20305676256390928]
本稿では,線形予測器を用いた多変量回帰と分類問題の解法を提案する。
本論文で記述されたアルゴリズムのpython実装は、http://cse.lab.imtlucca.it/bemporad/parcで利用可能である。
論文 参考訳(メタデータ) (2021-03-10T17:07:57Z) - Fast OSCAR and OWL Regression via Safe Screening Rules [97.28167655721766]
順序付き$L_1$ (OWL)正規化回帰は、高次元スパース学習のための新しい回帰分析である。
近勾配法はOWL回帰を解くための標準手法として用いられる。
未知の順序構造を持つ原始解の順序を探索することにより、OWL回帰の最初の安全なスクリーニングルールを提案する。
論文 参考訳(メタデータ) (2020-06-29T23:35:53Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
我々はReLU回帰の根本的な問題を考察する。
目的は、未知の分布から引き出された2乗損失に対して、最も適したReLUを出力することである。
論文 参考訳(メタデータ) (2020-05-26T16:26:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。