Learning Differential Diagnosis of Skin Conditions with Co-occurrence
Supervision using Graph Convolutional Networks
- URL: http://arxiv.org/abs/2007.06666v1
- Date: Mon, 13 Jul 2020 20:13:25 GMT
- Title: Learning Differential Diagnosis of Skin Conditions with Co-occurrence
Supervision using Graph Convolutional Networks
- Authors: Junyan Wu, Hao Jiang, Xiaowei Ding, Anudeep Konda, Jin Han, Yang
Zhang, Qian Li
- Abstract summary: We propose a deep learning system (DLS) that may predict differential diagnosis of skin conditions using clinical images.
Our DLS formulates the differential diagnostics as a multi-label classification task over 80 conditions when only incomplete image labels are available.
Our approach is demonstrated on 136,462 clinical images and concludes that the classification accuracy greatly benefit from the Co-occurrence supervision.
- Score: 8.39397743703592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skin conditions are reported the 4th leading cause of nonfatal disease burden
worldwide. However, given the colossal spectrum of skin disorders defined
clinically and shortage in dermatology expertise, diagnosing skin conditions in
a timely and accurate manner remains a challenging task. Using computer vision
technologies, a deep learning system has proven effective assisting clinicians
in image diagnostics of radiology, ophthalmology and more. In this paper, we
propose a deep learning system (DLS) that may predict differential diagnosis of
skin conditions using clinical images. Our DLS formulates the differential
diagnostics as a multi-label classification task over 80 conditions when only
incomplete image labels are available. We tackle the label incompleteness
problem by combining a classification network with a Graph Convolutional
Network (GCN) that characterizes label co-occurrence and effectively
regularizes it towards a sparse representation. Our approach is demonstrated on
136,462 clinical images and concludes that the classification accuracy greatly
benefit from the Co-occurrence supervision. Our DLS achieves 93.6% top-5
accuracy on 12,378 test images and consistently outperform the baseline
classification network.
Related papers
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis.
Some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise.
Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal.
arXiv Detail & Related papers (2022-08-04T22:14:18Z) - Discriminative Kernel Convolution Network for Multi-Label Ophthalmic
Disease Detection on Imbalanced Fundus Image Dataset [13.687617973585983]
Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataract are the main reason for visual impairment around the world.
This work presents a discriminative kernel convolution network (DKCNet), which explores discriminative region-wise features.
It is found to give good performance on completely unseen fundus images also.
arXiv Detail & Related papers (2022-07-16T12:03:27Z) - DenseNet approach to segmentation and classification of dermatoscopic
skin lesions images [0.0]
This paper proposes an improved method for segmentation and classification for skin lesions using two architectures.
The combination of U-Net and DenseNet121 provides acceptable results in dermatoscopic image analysis.
cancerous and non-cancerous samples were detected in DenseNet121 network with 79.49% and 93.11% accuracy respectively.
arXiv Detail & Related papers (2021-10-09T19:12:23Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis [7.005458308454871]
We develop a CNN-based model for accurate classification of OCT scans.
We place an emphasis on producing both qualitative and quantitative explanations of the model's decisions.
Our work is the first to produce detailed explanations of the model's decisions.
arXiv Detail & Related papers (2021-09-03T17:59:34Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Alleviating the Incompatibility between Cross Entropy Loss and Episode
Training for Few-shot Skin Disease Classification [76.89093364969253]
We propose to apply Few-Shot Learning to skin disease identification to address the extreme scarcity of training sample problem.
Based on a detailed analysis, we propose the Query-Relative (QR) loss, which proves superior to Cross Entropy (CE) under episode training.
We further strengthen the proposed QR loss with a novel adaptive hard margin strategy.
arXiv Detail & Related papers (2020-04-21T00:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.