DenseNet approach to segmentation and classification of dermatoscopic
skin lesions images
- URL: http://arxiv.org/abs/2110.04632v1
- Date: Sat, 9 Oct 2021 19:12:23 GMT
- Title: DenseNet approach to segmentation and classification of dermatoscopic
skin lesions images
- Authors: Reza Zare and Arash Pourkazemi
- Abstract summary: This paper proposes an improved method for segmentation and classification for skin lesions using two architectures.
The combination of U-Net and DenseNet121 provides acceptable results in dermatoscopic image analysis.
cancerous and non-cancerous samples were detected in DenseNet121 network with 79.49% and 93.11% accuracy respectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At present, cancer is one of the most important health issues in the world.
Because early detection and appropriate treatment in cancer are very effective
in the recovery and survival of patients, image processing as a diagnostic tool
can help doctors to diagnose in the first recognition of cancer. One of the
most important steps in diagnosing a skin lesion is to automatically detect the
border of the skin image because the accuracy of the next steps depends on it.
If these subtleties are identified, they can have a great impact on the
diagnosis of the disease. Therefore, there is a good opportunity to develop
more accurate algorithms to analyze such images. This paper proposes an
improved method for segmentation and classification for skin lesions using two
architectures, the U-Net for image segmentation and the DenseNet121 for image
classification which have excellent accuracy. We tested the segmentation
architecture of our model on the ISIC-2018 dataset and the classification on
the HAM10000 dataset. Our results show that the combination of U-Net and
DenseNet121 architectures provides acceptable results in dermatoscopic image
analysis compared to previous research. Another classification examined in this
study is cancerous and non-cancerous samples. In this classification, cancerous
and non-cancerous samples were detected in DenseNet121 network with 79.49% and
93.11% accuracy respectively.
Related papers
- Skin Cancer Segmentation and Classification Using Vision Transformer for
Automatic Analysis in Dermatoscopy-based Non-invasive Digital System [0.0]
This study introduces a groundbreaking approach to skin cancer classification, employing the Vision Transformer.
The Vision Transformer is a state-of-the-art deep learning architecture renowned for its success in diverse image analysis tasks.
The Segment Anything Model aids in precise segmentation of cancerous areas, attaining high IOU and Dice Coefficient.
arXiv Detail & Related papers (2024-01-09T11:22:54Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Skin Lesion Diagnosis Using Convolutional Neural Networks [0.30458514384586394]
This project aims to address the issue by collecting state-of-the-art techniques for image classification from various fields.
The models were trained using a dataset of 8012 images, and their performance was evaluated using 2003 images.
It's worth noting that this model is trained end-to-end, directly from the image to the labels, without the need for handcrafted feature extraction.
arXiv Detail & Related papers (2023-05-18T17:15:08Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
We propose a noval method which combines the deep learning algorithm in image classification, the DenseNet169 framework and Rectified Adam optimization algorithm.
Our model achieves superior performance over the other classical convolutional neural networks approaches, such as Vgg19, Resnet34, Resnet50.
arXiv Detail & Related papers (2020-11-13T16:04:39Z) - Investigating and Exploiting Image Resolution for Transfer
Learning-based Skin Lesion Classification [3.110738188734789]
Fine-tuning pre-trained convolutional neural networks (CNNs) has been shown to work well for skin lesion classification.
In this paper, we explore the effect of input image size on skin lesion classification performance of fine-tuned CNNs.
Our results show that using very small images (of size 64x64 pixels) degrades the classification performance, while images of size 128x128 pixels support good performance with larger image sizes leading to slightly improved classification.
arXiv Detail & Related papers (2020-06-25T21:51:24Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.