Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis
- URL: http://arxiv.org/abs/2109.02436v1
- Date: Fri, 3 Sep 2021 17:59:34 GMT
- Title: Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis
- Authors: Evan Wen, Max Ehrlich
- Abstract summary: We develop a CNN-based model for accurate classification of OCT scans.
We place an emphasis on producing both qualitative and quantitative explanations of the model's decisions.
Our work is the first to produce detailed explanations of the model's decisions.
- Score: 7.005458308454871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 30 million Optical Coherence Tomography (OCT) imaging tests are issued every
year to diagnose various retinal diseases, but accurate diagnosis of OCT scans
requires trained ophthalmologists who are still prone to making
misclassifications. With better systems for diagnosis, many cases of vision
loss caused by retinal disease could be entirely avoided. In this work, we
developed a CNN-based model for accurate classification of CNV, DME, Drusen,
and Normal OCT scans. Furthermore, we placed an emphasis on producing both
qualitative and quantitative explanations of the model's decisions. Our
class-weighted EfficientNet B2 classification model performed at 99.79%
accuracy. We then produced and analyzed heatmaps of where in the OCT scan the
model focused. After producing the heatmaps, we created breakdowns of the
specific retinal layers the model focused on. While highly accurate models have
been previously developed, our work is the first to produce detailed
explanations of the model's decisions. The combination of accuracy and
interpretability in our work can be clinically applied for better patient care.
Future work can use a similar model for classification on larger and more
diverse data sets.
Related papers
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - Convolutional Neural Network Model for Diabetic Retinopathy Feature
Extraction and Classification [6.236743421605786]
We create a novel CNN model and identifies the severity of Diabetic Retinopathy through fundus image input.
We classified 4 known DR features, including micro-aneurysms, cotton wools, exudates, and hemorrhages, through convolutional layers.
Our contribution is an interpretable model with similar accuracy to more complex models.
arXiv Detail & Related papers (2023-10-16T20:09:49Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis.
Some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise.
Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal.
arXiv Detail & Related papers (2022-08-04T22:14:18Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.