Simulating the same physics with two distinct Hamiltonians
- URL: http://arxiv.org/abs/2007.06740v3
- Date: Tue, 6 Apr 2021 08:29:55 GMT
- Title: Simulating the same physics with two distinct Hamiltonians
- Authors: Karol Gietka, Ayaka Usui, Jianqiao Deng, Thomas Busch
- Abstract summary: We show how one can build an alternative version of a digital quantum simulator.
We present a method for creating many-body maximally entangled states using only short-range nearest-neighbor interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a framework and give an example for situations where two distinct
Hamiltonians living in the same Hilbert space can be used to simulate the same
physics. As an example of an analog simulation, we first discuss how one can
simulate an infinite-range-interaction one-axis twisting Hamiltonian using a
short-range nearest-neighbor-interaction Heisenberg XXX model with a staggered
field. Based on this, we show how one can build an alternative version of a
digital quantum simulator. As a by-product, we present a method for creating
many-body maximally entangled states using only short-range nearest-neighbor
interactions.
Related papers
- Quantum simulation for strongly interacting fermions with neutral atoms array: towards the simulation of materials of interest [0.0]
We design a variational algorithm that can be implemented on a Rydberg atom simulator for chemistry.
We show that by limiting the number of measurements, we can reach the fundamental energy of H2, LiH and BeH2 molecules with 5% error.
For a second algorithm, we used the "slave" spin method to implement the physics of the Fermi-Hubbard 2D model on a Rydberg atom simulator.
arXiv Detail & Related papers (2024-06-19T08:48:10Z) - Quantum simulation of one-dimensional fermionic systems with Ising Hamiltonians [0.07373617024876723]
We propose a method to simulate the time-evolution of a large class of spinless fermionic systems in 1D using simple Ising-type Hamiltonians with local transverse fields.
Our approach makes the simulation of a large class of fermionic many-body systems feasible on analogue quantum hardware.
arXiv Detail & Related papers (2024-06-10T15:39:55Z) - Simulating Open Quantum Systems Using Hamiltonian Simulations [4.328210085579236]
We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, differential equations, and Hamiltonian simulations.
We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order.
This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits.
arXiv Detail & Related papers (2023-11-27T04:38:13Z) - Simplifying the simulation of local Hamiltonian dynamics [0.0]
Local Hamiltonians, $H_k$, describe non-trivial $k$-body interactions in quantum many-body systems.
We build upon known methods to derive examples of $H_k$ and $H_k'$ that simulate the same physics.
We propose a method to search for the $k'$-local Hamiltonian that simulates, with the highest possible precision, the short time dynamics of a given $H_k$ Hamiltonian.
arXiv Detail & Related papers (2023-10-10T22:31:45Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Digital-Analog Quantum Simulations Using The Cross-Resonance Effect [0.0]
Digital-analog quantum computation aims to reduce the currently infeasible resource requirements needed for near-term quantum information processing.
We consider superconducting architectures and extend the cross-resonance effect, up to first order in theory, from a two-qubit interaction to an analog Hamiltonian acting on 1D chains and 2D square lattices.
arXiv Detail & Related papers (2020-11-20T17:07:28Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.