論文の概要: A model to support collective reasoning: Formalization, analysis and
computational assessment
- arxiv url: http://arxiv.org/abs/2007.06850v1
- Date: Tue, 14 Jul 2020 06:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 14:33:07.421267
- Title: A model to support collective reasoning: Formalization, analysis and
computational assessment
- Title(参考訳): 集合的推論を支援するモデル:形式化・分析・計算評価
- Authors: Jordi Ganzer, Natalia Criado, Maite Lopez-Sanchez, Simon Parsons, Juan
A. Rodriguez-Aguilar
- Abstract要約: そこで本研究では,人間の議論を表現する新しいモデルと,それらから集合的な結論を得る方法を提案する。
このモデルは、ユーザが議論に新しい情報を導入することによって、既存のアプローチの欠点を克服する。
合意の欠如があっても、集約された意見が一貫性を持つことが示される。
- 参考スコア(独自算出の注目度): 1.126958266688732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by e-participation systems, in this paper we propose a new model to
represent human debates and methods to obtain collective conclusions from them.
This model overcomes drawbacks of existing approaches by allowing users to
introduce new pieces of information into the discussion, to relate them to
existing pieces, and also to express their opinion on the pieces proposed by
other users. In addition, our model does not assume that users' opinions are
rational in order to extract information from it, an assumption that
significantly limits current approaches. Instead, we define a weaker notion of
rationality that characterises coherent opinions, and we consider different
scenarios based on the coherence of individual opinions and the level of
consensus that users have on the debate structure. Considering these two
factors, we analyse the outcomes of different opinion aggregation functions
that compute a collective decision based on the individual opinions and the
debate structure. In particular, we demonstrate that aggregated opinions can be
coherent even if there is a lack of consensus and individual opinions are not
coherent. We conclude our analysis with a computational evaluation
demonstrating that collective opinions can be computed efficiently for
real-sized debates.
- Abstract(参考訳): 本稿では,e-participationシステムに着想を得て,人間の議論を表現し,それらから集団的な結論を得るための新しいモデルを提案する。
このモデルは,ユーザが議論に新たな情報を導入し,既存の情報に関連付けることによって,既存のアプローチの欠点を克服すると同時に,他のユーザの提案した情報に対する意見を表明する。
また,このモデルでは,ユーザの意見が合理的であるとして,情報抽出を前提とせず,現在のアプローチを著しく制限している。
代わりに、一貫性のある意見を特徴付ける合理性の弱い概念を定義し、個別の意見の一貫性とユーザーが議論構造に持つコンセンサスレベルに基づいて異なるシナリオを考察する。
この2つの要因を考慮し,個別の意見と討論構造に基づいて集団意思決定を行う異なる意見集約関数の結果を分析した。
特に,合意の欠如や個々人の意見が一貫性がない場合でも,総合的な意見が一貫性を持つことを実証する。
本研究は,実物大の議論に対して,集団的意見を効率的に計算できることを示す数値的評価で結論づける。
関連論文リスト
- A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Fostering User Engagement in the Critical Reflection of Arguments [3.26297440422721]
本研究では,人間との対話を行うシステムを提案する。
ユーザが既存の意見に集中しすぎれば,システムに介入することが可能になる。
58名の被験者を対象に,本モデルと介入機構の効果について調査を行った。
論文 参考訳(メタデータ) (2023-08-17T15:48:23Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
決定推定係数は, 相手の意思決定に対する後悔度を低く抑えるのに必要であり, 十分であることを示す。
我々は、決定推定係数を他のよく知られた複雑性尺度の変種に結びつける新しい構造結果を提供する。
論文 参考訳(メタデータ) (2022-06-27T06:20:37Z) - Evaluating Bayesian Model Visualisations [0.39845810840390733]
確率モデルは、最終的に人々が下した幅広いビジネスおよび政策決定を知らせる。
近年のアルゴリズム,計算,ソフトウェアフレームワークの開発はベイズ確率モデルの普及を促進する。
意思決定者は複雑なクエリを探索し、理論上はWhat-if-style条件付けを行うことができるが、不確実性の下でユーザの理解と合理的な意思決定を最大化するためには、適切な視覚化と対話ツールが必要である。
論文 参考訳(メタデータ) (2022-01-10T19:15:39Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
アスペクトクエリに基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、アスペクトコントローラで強化された(リビュー、サマリ)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
論文 参考訳(メタデータ) (2021-09-07T16:09:17Z) - Helping users discover perspectives: Enhancing opinion mining with joint
topic models [5.2424255020469595]
本稿では,共同トピックモデリングによる意見マイニングの強化について考察する。
我々は,抽出された視点の人間の理解可能性を評価するユーザスタディにおいて,共同トピックモデル(TAM,JST,VODUM,LAM)を4つ評価した。
論文 参考訳(メタデータ) (2020-10-23T16:13:06Z) - Evaluating Interactive Summarization: an Expansion-Based Framework [97.0077722128397]
対話型要約のためのエンドツーエンド評価フレームワークを開発した。
我々のフレームワークには、実際のユーザセッションの収集手順と、標準に依存する評価方法が含まれています。
当社のソリューションはすべて、ベンチマークとして公開されることを意図しています。
論文 参考訳(メタデータ) (2020-09-17T15:48:13Z) - Explaining reputation assessments [6.87724532311602]
本稿では,定量的評価モデルによる評価の根拠を説明するためのアプローチを提案する。
提案手法は,複数属性決定モデルを用いて決定を下すための既存のアプローチを適応し,拡張し,組み合わせる。
論文 参考訳(メタデータ) (2020-06-15T23:19:35Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。