Detecting Topological Quantum Phase Transitions via the c-Function
- URL: http://arxiv.org/abs/2007.07273v2
- Date: Tue, 12 Jan 2021 03:38:36 GMT
- Title: Detecting Topological Quantum Phase Transitions via the c-Function
- Authors: Matteo Baggioli, Dimitrios Giataganas
- Abstract summary: We consider a holographic model which exhibits a topological quantum phase transition between a topologically trivial insulating phase and a gapless Weyl semimetal.
The c-function robustly shows a global feature at the quantum criticality and distinguishes with great accuracy the two separate zero temperature phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the c-function as a new and accurate probe to detect the location
of topological quantum critical points. As a direct application, we consider a
holographic model which exhibits a topological quantum phase transition between
a topologically trivial insulating phase and a gapless Weyl semimetal. The
quantum critical point displays a strong Lifshitz-like anisotropy in the
spatial directions and the quantum phase transition does not follow the
standard Landau paradigm. The c-function robustly shows a global feature at the
quantum criticality and distinguishes with great accuracy the two separate zero
temperature phases. Taking into account the relation of the c-function with the
entanglement entropy, we conjecture that our proposal is a general feature of
quantum phase transitions and that is applicable beyond the holographic
framework.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Topological dynamical quantum phase transition in a quantum skyrmion
phase [0.0]
Quantum skyrmionic phase is modelled in a 2D helical spin lattice.
Next nearest-neighbour interaction improves the stability.
It also causes a shift of the topological phase in the parameter space.
arXiv Detail & Related papers (2023-03-13T10:24:22Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Foliated order parameter in a fracton phase transition [0.0]
We study phase transition in the X-cube model in the presence of a non-linear perturbation.
We show there is a first order quantum phase transition from a type I fracton phase to a magnetized phase.
We introduce a non-local order parameter in the form of a foliated operator which can characterize the above phase transition.
arXiv Detail & Related papers (2022-06-23T20:11:20Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Controlling topological phases of matter with quantum light [0.0]
Controlling the topological properties of quantum matter is a major goal of condensed matter physics.
We consider a prototypical model for topological phase transition, the one-dimensional Su-Schrieffer-Heeger (SSH) model, coupled to a single mode cavity.
We show that depending on the lattice geometry and the strength of light-matter coupling one can either turn a trivial phase into a topological one or viceversa.
arXiv Detail & Related papers (2022-04-12T16:27:10Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Fidelity susceptibility near topological phase transitions in quantum
walks [0.0]
We show that for topological phase transitions in Dirac models, the fidelity susceptibility coincides with the curvature function whose integration gives the topological invariant.
We map out the profile and criticality of the fidelity susceptibility to quantum walks that simulate one-dimensional class BDI and two-dimensional class D Dirac models.
arXiv Detail & Related papers (2020-07-21T09:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.