論文の概要: Self-Supervised Nuclei Segmentation in Histopathological Images Using
Attention
- arxiv url: http://arxiv.org/abs/2007.08373v1
- Date: Thu, 16 Jul 2020 14:49:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 23:50:32.688582
- Title: Self-Supervised Nuclei Segmentation in Histopathological Images Using
Attention
- Title(参考訳): 注視による病理像の自己監督核分割
- Authors: Mihir Sahasrabudhe, Stergios Christodoulidis, Roberto Salgado, Stefan
Michiels, Sherene Loi, Fabrice Andr\'e, Nikos Paragios, Maria Vakalopoulou
- Abstract要約: スライド病理組織像全体に対する自己監督的核分割法を提案する。
本手法は, 原子核の大きさとテクスチャが, パッチを抽出した倍率を決定できるという仮定に基づいている。
実験の結果,通常の後処理では,他の非教師なし核分割法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.3039500405009665
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Segmentation and accurate localization of nuclei in histopathological images
is a very challenging problem, with most existing approaches adopting a
supervised strategy. These methods usually rely on manual annotations that
require a lot of time and effort from medical experts. In this study, we
present a self-supervised approach for segmentation of nuclei for whole slide
histopathology images. Our method works on the assumption that the size and
texture of nuclei can determine the magnification at which a patch is
extracted. We show that the identification of the magnification level for tiles
can generate a preliminary self-supervision signal to locate nuclei. We further
show that by appropriately constraining our model it is possible to retrieve
meaningful segmentation maps as an auxiliary output to the primary
magnification identification task. Our experiments show that with standard
post-processing, our method can outperform other unsupervised nuclei
segmentation approaches and report similar performance with supervised ones on
the publicly available MoNuSeg dataset. Our code and models are available
online to facilitate further research.
- Abstract(参考訳): 病理組織像における核のセグメンテーションと正確な局在化は非常に困難な問題であり、既存のアプローチでは教師あり戦略を採用している。
これらの方法は通常、医療専門家から多くの時間と労力を必要とする手動アノテーションに依存しています。
本研究では,スライス組織像全体に対する核分割の自己監督的アプローチを提案する。
本手法は,核の大きさとテクスチャがパッチ抽出時の拡大度を決定することができると仮定する。
タイルの倍率レベルを同定することで、予備的な自己超越信号を生成して核を特定できることを示す。
さらに,本モデルに適切に制約を加えることで,一次拡大識別タスクの補助出力として有意義なセグメンテーションマップを検索できることを示す。
実験の結果、標準後処理により、他の教師なし核セグメンテーションアプローチを上回ることができ、monusegデータセット上で教師なし核セグメンテーションと同等の性能を報告できることがわかった。
私たちのコードとモデルは、さらなる研究を促進するためにオンラインで利用できます。
関連論文リスト
- AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images [26.333686941245197]
本稿では,U-NetアーキテクチャとDenseNet-121バックボーンを組み合わせたセグメンテーション手法を提案する。
本モデルでは,ウェーブレット誘導チャネルアテンションモジュールを導入し,セル境界のデライン化を促進させる。
その結果,Mouseg と TNBC の2つの病理組織学的データセットを用いて,提案モデルの優位性を実証した。
論文 参考訳(メタデータ) (2024-06-12T17:10:27Z) - Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based
Residual U-Blocks Network [9.718765096478371]
核分割の現在の手法は、核形態学や輪郭に基づくアプローチに依存している。
本稿では,ハイブリッドアテンションに基づく残差Uブロックを用いたデュアルブランチネットワークを提案する。
ネットワーク内において,ネットワークからコンテキスト情報を効果的に抽出し,マージするコンテキスト融合ブロック(CF-block)を提案する。
論文 参考訳(メタデータ) (2023-08-07T08:03:20Z) - Cyclic Learning: Bridging Image-level Labels and Nuclei Instance
Segmentation [19.526504045149895]
本稿では,この問題を解決するために,循環学習と呼ばれる画像レベルの弱教師付き手法を提案する。
サイクルラーニングは、フロントエンドの分類タスクと、バックエンドの半教師付きインスタンスセグメンテーションタスクで構成される。
3つのデータセットを用いた実験は、核インスタンスのセグメンテーションにおいて、他の画像レベルの弱教師付き手法よりも優れた、我々の手法の優れた一般性を示す。
論文 参考訳(メタデータ) (2023-06-05T08:32:12Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
ディープニューラルネットワークは、H&E染色病理像の核インスタンスセグメンテーションに広く応用されている。
通常、類似したパターンと冗長なパターンを含む核画像のデータセットに全てのピクセルをラベル付けするのは非効率で不要である。
そこで本研究では,アノテートするイメージパッチを数個だけ選択し,選択したサンプルからトレーニングセットを増強し,半教師付きで核分割を実現する,新しいフル核分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-20T14:53:26Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
核分割のための弱い教師付き学習法を提案する。
粗いピクセルレベルのラベルは、ボロノイ図に基づく点アノテーションから導かれる。
病理画像の核分割に適した自己教師付き視覚表現学習法を提案する。
論文 参考訳(メタデータ) (2022-02-16T17:08:44Z) - Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
and Classification [4.642724910208435]
組織像解析のための大規模データセットの収集を可能にする多段階アノテーションパイプラインを提案する。
我々は、50万近いラベル付き核を含む、既知の最大の核インスタンスのセグメンテーションと分類データセットを生成する。
論文 参考訳(メタデータ) (2021-08-25T11:58:52Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
本稿では,核インスタンス分割タスクにおける畳み込みニューラルネットワーク(CNN)の能力を活用するための,新たな自己教師型学習フレームワークを提案する。
提案するアプローチには、2つのサブタスクが含まれており、ニューラルネットワークは、核の大きさと量の事前知識を暗黙的に活用することができる。
公開されているMoNuSegデータセットの実験結果から、提案した自己教師付き学習手法は、核インスタンスのセグメンテーション精度を著しく向上させることができることが示された。
論文 参考訳(メタデータ) (2020-07-22T03:37:14Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z) - Towards a Complete Pipeline for Segmenting Nuclei in Feulgen-Stained
Images [52.946144307741974]
頸部がんは世界で2番目に多いがんである。
本稿では,畳み込みニューラルネットワークを用いたフェールゲン安定画像中の核分割のための完全なパイプラインを提案する。
We achieved a overall IoU 0.78, showed the availableability of the approach of nuclear segmentation on Feulgen-stained images。
論文 参考訳(メタデータ) (2020-02-19T18:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。