Reinforcement Learning-Enabled Decision-Making Strategies for a
Vehicle-Cyber-Physical-System in Connected Environment
- URL: http://arxiv.org/abs/2007.09101v1
- Date: Thu, 16 Jul 2020 14:37:50 GMT
- Title: Reinforcement Learning-Enabled Decision-Making Strategies for a
Vehicle-Cyber-Physical-System in Connected Environment
- Authors: Teng Liu, Xiaolin Tang, Jinwei Zhang, Wenbo Li, Zejian Deng, Yalian
Yang
- Abstract summary: This paper focuses on discussing the decision-making (DM) strategy for autonomous vehicles in a connected environment.
Two classical reinforcement learning (RL) algorithms, Q-learning and Dyna, are leveraged to derive the DM strategies.
The control performance of the derived DM policies in safety and efficiency is analyzed.
- Score: 9.61519028373031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a typical vehicle-cyber-physical-system (V-CPS), connected automated
vehicles attracted more and more attention in recent years. This paper focuses
on discussing the decision-making (DM) strategy for autonomous vehicles in a
connected environment. First, the highway DM problem is formulated, wherein the
vehicles can exchange information via wireless networking. Then, two classical
reinforcement learning (RL) algorithms, Q-learning and Dyna, are leveraged to
derive the DM strategies in a predefined driving scenario. Finally, the control
performance of the derived DM policies in safety and efficiency is analyzed.
Furthermore, the inherent differences of the RL algorithms are embodied and
discussed in DM strategies.
Related papers
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
We introduce an efficient method to train diverse driving policies for social vehicles as a single meta-policy.
By randomizing the interaction-based reward functions of social vehicles, we can generate diverse objectives and efficiently train the meta-policy.
We propose a training strategy to enhance the robustness of the ego vehicle's driving policy using the environment where social vehicles are controlled by the learned meta-policy.
arXiv Detail & Related papers (2023-07-19T17:42:36Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
Driving SMARTS is a regular competition designed to tackle problems caused by the distribution shift in dynamic interaction contexts.
The proposed competition supports methodologically diverse solutions, such as reinforcement learning (RL) and offline learning methods.
arXiv Detail & Related papers (2022-11-14T17:10:53Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
This paper presents a self-evolving decision-making system based on the Integrated Decision and Control (IDC)
An RL algorithm called constrained mixed policy gradient (CMPG) is proposed to consistently upgrade the driving policy of the IDC.
Experiment results show that boosting by data, the system can achieve better driving ability over model-based methods.
arXiv Detail & Related papers (2022-10-19T14:58:41Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Eco-driving for Electric Connected Vehicles at Signalized Intersections:
A Parameterized Reinforcement Learning approach [6.475252042082737]
This paper proposes an eco-driving framework for electric connected vehicles (CVs) based on reinforcement learning (RL)
We show that our strategy can significantly reduce energy consumption by learning proper action schemes without any interruption of other human-driven vehicles (HDVs)
arXiv Detail & Related papers (2022-06-24T04:11:28Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway.
The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision.
The PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability.
arXiv Detail & Related papers (2020-08-26T22:49:27Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
Deep reinforcement learning (DRL) has emerged as a potent methodology for addressing artificial intelligence challenges.
This article compares several DRL approaches for decision-making challenges encountered by autono-mous vehicles on freeways.
A series of simulation experiments are conducted to assess the control performance of these DRL-enabled decision-making strategies.
arXiv Detail & Related papers (2020-08-04T03:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.