Quantum ensemble of trained classifiers
- URL: http://arxiv.org/abs/2007.09293v1
- Date: Sat, 18 Jul 2020 01:01:33 GMT
- Title: Quantum ensemble of trained classifiers
- Authors: Ismael C. S. Araujo and Adenilton J. da Silva
- Abstract summary: A quantum computer is capable of representing an exponentially large set of states, according to the number of qubits available.
Quantum machine learning explores the potential of quantum computing to enhance machine learning algorithms.
- Score: 2.048335092363436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Through superposition, a quantum computer is capable of representing an
exponentially large set of states, according to the number of qubits available.
Quantum machine learning is a subfield of quantum computing that explores the
potential of quantum computing to enhance machine learning algorithms. An
approach of quantum machine learning named quantum ensembles of quantum
classifiers consists of using superposition to build an exponentially large
ensemble of classifiers to be trained with an optimization-free learning
algorithm. In this work, we investigate how the quantum ensemble works with the
addition of an optimization method. Experiments using benchmark datasets show
the improvements obtained with the addition of the optimization step.
Related papers
- Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
arXiv Detail & Related papers (2024-10-29T18:00:07Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Optimal quantum kernels for small data classification [0.0]
We show an algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data.
The performance of the resulting quantum models for classification problems with a small number of training points significantly exceeds that of optimized classical models.
arXiv Detail & Related papers (2022-03-25T18:26:44Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - On quantum ensembles of quantum classifiers [0.0]
Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques.
A specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised.
On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup.
arXiv Detail & Related papers (2020-01-29T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.