Analog quantum variational embedding classifier
- URL: http://arxiv.org/abs/2211.02748v2
- Date: Tue, 9 May 2023 20:24:20 GMT
- Title: Analog quantum variational embedding classifier
- Authors: Rui Yang, Samuel Bosch, Bobak Kiani, Seth Lloyd, and Adrian Lupascu
- Abstract summary: We propose a gate-based variational embedding classifier based on an analog quantum computer.
We find the performance of our classifier can be increased by increasing the number of qubits until the performance saturates and fluctuates.
Our algorithm presents the possibility of using current quantum annealers for solving practical machine-learning problems.
- Score: 8.445680783099196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning has the potential to provide powerful algorithms for
artificial intelligence. The pursuit of quantum advantage in quantum machine
learning is an active area of research. For current noisy, intermediate-scale
quantum (NISQ) computers, various quantum-classical hybrid algorithms have been
proposed. One such previously proposed hybrid algorithm is a gate-based
variational embedding classifier, which is composed of a classical neural
network and a parameterized gate-based quantum circuit. We propose a quantum
variational embedding classifier based on an analog quantum computer, where
control signals vary continuously in time. In our algorithm, the classical data
is transformed into the parameters of the time-varying Hamiltonian of the
analog quantum computer by a linear transformation. The nonlinearity needed for
a nonlinear classification problem is purely provided by the analog quantum
computer through the nonlinear dependence of the final quantum state on the
control parameters of the Hamiltonian. We performed numerical simulations that
demonstrate the effectiveness of our algorithm for performing binary and
multi-class classification on linearly inseparable datasets such as concentric
circles and MNIST digits. Our classifier can reach accuracy comparable with the
best classical classifiers. We find the performance of our classifier can be
increased by increasing the number of qubits until the performance saturates
and fluctuates. Moreover, the number of optimization parameters of our
classifier scales linearly with the number of qubits. The increase of number of
training parameters when the size increases is therefore not as fast as that of
neural network. Our algorithm presents the possibility of using current quantum
annealers for solving practical machine-learning problems, and it could also be
useful to explore quantum advantage in quantum machine learning.
Related papers
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum algorithm for neural network enhanced multi-class parallel
classification [0.3314882635954752]
The proposed algorithm has a higher classification accuracy, faster convergence and higher expression ability.
For a classification task of $L$-class, the analysis shows that the space and time complexity of the quantum circuit are $O(L*logL)$ and $O(logL)$, respectively.
arXiv Detail & Related papers (2022-03-08T14:06:13Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.