論文の概要: IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals
- arxiv url: http://arxiv.org/abs/2007.10866v1
- Date: Tue, 21 Jul 2020 14:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 03:54:42.243900
- Title: IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals
- Title(参考訳): IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals
- Authors: Anirudh Anil Ojha, Rohin Garg, Shashank Gupta and Ashutosh Modi
- Abstract要約: 本稿では,SemEval-2020のタスク5への取り組みについて述べる。
そのタスクは、反事実として知られるテキスト表現のクラスを検出することを含んでいた。
カウンターファクトステートメントは、発生しなかった、あるいは発生できなかった事象と、そのような事象の起こりうる影響を記述している。
- 参考スコア(独自算出の注目度): 3.0396370700420063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our efforts in tackling Task 5 of SemEval-2020. The task
involved detecting a class of textual expressions known as counterfactuals and
separating them into their constituent elements. Counterfactual statements
describe events that have not or could not have occurred and the possible
implications of such events. While counterfactual reasoning is natural for
humans, understanding these expressions is difficult for artificial agents due
to a variety of linguistic subtleties. Our final submitted approaches were an
ensemble of various fine-tuned transformer-based and CNN-based models for the
first subtask and a transformer model with dependency tree information for the
second subtask. We ranked 4-th and 9-th in the overall leaderboard. We also
explored various other approaches that involved the use of classical methods,
other neural architectures and the incorporation of different linguistic
features.
- Abstract(参考訳): 本稿では,semeval-2020のタスク5に取り組む取り組みについて述べる。
タスクは、反事実として知られるテキスト表現のクラスを検出し、それらを構成要素に分離する。
カウンターファクトステートメントは、発生しなかった、あるいは発生できなかった事象と、そのような事象の起こりうる影響を記述している。
反事実推論は人間にとって自然であるが、これらの表現を理解することは、さまざまな言語的微妙さのために、人工エージェントにとって困難である。
提案手法は,第1サブタスクに対する各種微調整トランスフォーマーとCNNベースモデルのアンサンブルと,第2サブタスクに対する依存性ツリー情報を備えたトランスフォーマーモデルである。
リーダーボード全体では4位と9位でした。
また、古典的手法、他のニューラル・アーキテクチャ、および異なる言語的特徴の組み入れを含む様々なアプローチについても検討した。
関連論文リスト
- Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies [0.0]
我々はエッセイに表される共感的関心と個人的な苦悩のレベルを予測する。
WASSA 2022の共感検出と感情分類の共有タスクに基づいて、フィードフォワードニューラルネットワークを実装した。
最終段階の一部として、これらのアプローチは、インタラクションにおける共感感情とパーソナリティ検出の共有タスクに適応した。
論文 参考訳(メタデータ) (2024-07-26T04:01:27Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Multiview Contextual Commonsense Inference: A New Dataset and Task [40.566530682082714]
CICEROv2は2,379の対話から8,351のインスタンスからなるデータセットである。
それは、コンテキストのコモンセンス推論の質問に対して、複数の人間が書いた回答を含んでいる。
CICEROv2の推論は、他の文脈コモンセンス推論データセットよりも意味的に多様であることを示す。
論文 参考訳(メタデータ) (2022-10-06T13:08:41Z) - Can Unsupervised Knowledge Transfer from Social Discussions Help
Argument Mining? [25.43442712037725]
本稿では,教師なし,議論型対話型知識の課題を克服するために,新しい伝達学習戦略を提案する。
本研究では,ChangeMyViewのサブレディットからの議論に富んだ社会的な議論を,教師なしの議論型知識の源泉として活用する。
本稿では,提案手法を補完する,コンポーネント間関係予測のための新しいプロンプトベースの戦略を提案する。
論文 参考訳(メタデータ) (2022-03-24T06:48:56Z) - Prediction or Comparison: Toward Interpretable Qualitative Reasoning [16.02199526395448]
現在のアプローチでは、セマンティクスを使用して自然言語入力を論理式に変換するか、あるいは1ステップで解決する"ブラックボックス"モデルを使用する。
本研究では,定性的推論タスクを,予測と比較という2つのタイプに分類する。
特に、2つの推論プロセスをシミュレートするために、エンドツーエンドでトレーニングされたニューラルネットワークモジュールを採用しています。
論文 参考訳(メタデータ) (2021-06-04T10:27:55Z) - Episodic Transformer for Vision-and-Language Navigation [142.6236659368177]
本稿では,長時間のサブタスク処理と複雑なヒューマンインストラクションの理解という2つの課題に取り組むことに焦点を当てる。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテストの分割で38.4%と8.5%のタスク成功率を達成した。
論文 参考訳(メタデータ) (2021-05-13T17:51:46Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Multimodal Pretraining Unmasked: A Meta-Analysis and a Unified Framework
of Vision-and-Language BERTs [57.74359320513427]
ビジョンと言語BERTを事前訓練して、これらの2つの重要なAI領域の交差点での課題に取り組む方法が提案されている。
これら2つのカテゴリの違いについて検討し、単一の理論的枠組みの下でそれらをどのように統合できるかを示す。
5つのV&L BERT間の経験的差異を明らかにするための制御実験を行った。
論文 参考訳(メタデータ) (2020-11-30T18:55:24Z) - CS-NLP team at SemEval-2020 Task 4: Evaluation of State-of-the-art NLP
Deep Learning Architectures on Commonsense Reasoning Task [3.058685580689605]
本稿では,SemEval-2020 Task 4 competition: Commonsense Validation and Explanation (ComVE) Challengeについて述べる。
本システムは、3つの異なる自然言語推論サブタスクに対して手動でキュレートされたラベル付きテキストデータセットを使用する。
第2のサブタスクでは、声明が意味をなさない理由を選択するため、27人の参加者のうち、最初の6チーム(93.7%)で非常に競争力のある結果が得られます。
論文 参考訳(メタデータ) (2020-05-17T13:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。