論文の概要: Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies
- arxiv url: http://arxiv.org/abs/2407.18496v1
- Date: Fri, 26 Jul 2024 04:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:29:54.698921
- Title: Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies
- Title(参考訳): 高度なNLP, トランスフォーマーネットワーク, 言語方法論を組み合わせたテキスト・マルチターン会話における人間の共感と感情のより正確な予測に向けて
- Authors: Manisha Singh, Divy Sharma, Alonso Ma, Nora Goldfine,
- Abstract要約: 我々はエッセイに表される共感的関心と個人的な苦悩のレベルを予測する。
WASSA 2022の共感検出と感情分類の共有タスクに基づいて、フィードフォワードニューラルネットワークを実装した。
最終段階の一部として、これらのアプローチは、インタラクションにおける共感感情とパーソナリティ検出の共有タスクに適応した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the WASSA 2022 Shared Task on Empathy Detection and Emotion Classification, we predict the level of empathic concern and personal distress displayed in essays. For the first stage of this project we implemented a Feed-Forward Neural Network using sentence-level embeddings as features. We experimented with four different embedding models for generating the inputs to the neural network. The subsequent stage builds upon the previous work and we have implemented three types of revisions. The first revision focuses on the enhancements to the model architecture and the training approach. The second revision focuses on handling class imbalance using stratified data sampling. The third revision focuses on leveraging lexical resources, where we apply four different resources to enrich the features associated with the dataset. During the final stage of this project, we have created the final end-to-end system for the primary task using an ensemble of models to revise primary task performance. Additionally, as part of the final stage, these approaches have been adapted to the WASSA 2023 Shared Task on Empathy Emotion and Personality Detection in Interactions, in which the empathic concern, emotion polarity, and emotion intensity in dyadic text conversations are predicted.
- Abstract(参考訳): WASSA 2022の共感検出と感情分類の共有タスクに基づいて,エッセイに表される共感的関心と個人的な苦悩のレベルを予測する。
このプロジェクトの最初の段階では,文レベルの埋め込みを機能として用いたフィードフォワードニューラルネットワークを実装した。
ニューラルネットワークへの入力を生成するために,4種類の埋め込みモデルを実験した。
その後の段階は、以前の作業に基づいて構築され、3種類のリビジョンを実施しました。
最初の改訂は、モデルアーキテクチャとトレーニングアプローチの強化に焦点を当てている。
第2の改訂は、階層化されたデータサンプリングを用いたクラス不均衡の処理に焦点を当てている。
第3の改訂は、データセットに関連する機能を強化するために、4つの異なるリソースを適用する、語彙リソースの活用に焦点を当てている。
本プロジェクトの最終段階において,本研究は,主タスクのパフォーマンスを改善するために,モデルのアンサンブルを用いて,主タスクの最終エンド・ツー・エンドシステムを構築した。
さらに、最終段階として、これらのアプローチは、対話における共感感情とパーソナリティ検出の共有タスク(WASSA 2023)に適応し、ダイアドテキストの会話における共感的関心、感情の極性、感情の強さを予測する。
関連論文リスト
- ConText at WASSA 2024 Empathy and Personality Shared Task: History-Dependent Embedding Utterance Representations for Empathy and Emotion Prediction in Conversations [0.8602553195689513]
WASSAは、相互作用における共感と感情予測に関するタスクを共有しており、これらのタスクに対するアプローチをベンチマークする機会を提供する。
我々は、会話における各発話の共感、感情の極性、感情の強さを、会話の文脈とともに分類される発話をフィードすることによってモデル化する。
また,会話からのすべての発話と,その共感を予測しているインターロケータを識別するトークンを入力して,各インターロケータの相手共感をモデル化する。
論文 参考訳(メタデータ) (2024-07-04T10:44:59Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Empathy and Distress Detection using Ensembles of Transformer Models [0.0]
本稿では,WASSA 2023共感・感情・パーソナリティ共有タスクへのアプローチについて述べる。
自然言語処理において、共感と悲惨な検出が重要な課題である。
Pearsonのrスコアは0.346で、共感と悲惨な検出のサブタスクでは3位です。
論文 参考訳(メタデータ) (2023-12-05T08:50:34Z) - Improving the Generalizability of Text-Based Emotion Detection by
Leveraging Transformers with Psycholinguistic Features [27.799032561722893]
本稿では,両方向長短期記憶(BiLSTM)ネットワークと変換器モデル(BERT,RoBERTa)を併用したテキストベースの感情検出手法を提案する。
提案したハイブリッドモデルでは,標準的なトランスフォーマーベースアプローチと比較して,分布外データへの一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2022-12-19T13:58:48Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - An Ensemble Approach for Multiple Emotion Descriptors Estimation Using
Multi-task Learning [12.589338141771385]
本稿では,第4回ABAW(Affective Behavior Analysis in-the-Wild)コンペティションへの提案方法について述べる。
顔情報のみを使用する代わりに、顔と顔の周囲のコンテキストを含む提供されるデータセットから完全な情報を利用する。
提案システムは,MTLチャレンジ検証データセット上で0.917の性能を実現する。
論文 参考訳(メタデータ) (2022-07-22T04:57:56Z) - Episodic Transformer for Vision-and-Language Navigation [142.6236659368177]
本稿では,長時間のサブタスク処理と複雑なヒューマンインストラクションの理解という2つの課題に取り組むことに焦点を当てる。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテストの分割で38.4%と8.5%のタスク成功率を達成した。
論文 参考訳(メタデータ) (2021-05-13T17:51:46Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - IITK-RSA at SemEval-2020 Task 5: Detecting Counterfactuals [3.0396370700420063]
本稿では,SemEval-2020のタスク5への取り組みについて述べる。
そのタスクは、反事実として知られるテキスト表現のクラスを検出することを含んでいた。
カウンターファクトステートメントは、発生しなかった、あるいは発生できなかった事象と、そのような事象の起こりうる影響を記述している。
論文 参考訳(メタデータ) (2020-07-21T14:45:53Z) - EmotiCon: Context-Aware Multimodal Emotion Recognition using Frege's
Principle [71.47160118286226]
EmotiConは、ビデオや画像から知覚された人間の感情認識をコンテキスト認識する学習アルゴリズムである。
心理学からフレーゲの文脈原理に動機づけられた我々のアプローチは、感情認識のための文脈の3つの解釈を組み合わせたものである。
平均精度 (AP) スコアは26クラスで35.48であり, 従来の手法よりも7-8の改善が見られた。
論文 参考訳(メタデータ) (2020-03-14T19:55:21Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。