論文の概要: PackIt: A Virtual Environment for Geometric Planning
- arxiv url: http://arxiv.org/abs/2007.11121v1
- Date: Tue, 21 Jul 2020 22:51:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 03:54:26.196060
- Title: PackIt: A Virtual Environment for Geometric Planning
- Title(参考訳): PackIt: 幾何学的計画のための仮想環境
- Authors: Ankit Goyal and Jia Deng
- Abstract要約: PackItは、幾何学的計画を行う能力を評価し、潜在的に学習する仮想環境である。
進化的アルゴリズムを用いて,一組の難解なパッケージングタスクを構築した。
- 参考スコア(独自算出の注目度): 68.79816936618454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to jointly understand the geometry of objects and plan actions
for manipulating them is crucial for intelligent agents. We refer to this
ability as geometric planning. Recently, many interactive environments have
been proposed to evaluate intelligent agents on various skills, however, none
of them cater to the needs of geometric planning. We present PackIt, a virtual
environment to evaluate and potentially learn the ability to do geometric
planning, where an agent needs to take a sequence of actions to pack a set of
objects into a box with limited space. We also construct a set of challenging
packing tasks using an evolutionary algorithm. Further, we study various
baselines for the task that include model-free learning-based and
heuristic-based methods, as well as search-based optimization methods that
assume access to the model of the environment. Code and data are available at
https://github.com/princeton-vl/PackIt.
- Abstract(参考訳): 物体の幾何学を共同で理解し、それらを操作するための行動計画が知的エージェントにとって不可欠である。
我々はこの能力を幾何学的計画と呼ぶ。
近年,様々なスキルの知的エージェントを評価するための対話型環境が提案されているが,幾何計画の必要性には適していない。
PackItは,空間が限られている箱にオブジェクトの集合を詰め込むためにエージェントが一連のアクションを取る必要がある,幾何学的計画を行う能力を評価し,潜在的に学習する仮想環境である。
また、進化的アルゴリズムを用いて、困難なパッキングタスクのセットを構築する。
さらに,モデルフリー学習法とヒューリスティック学習法,および環境モデルへのアクセスを前提とした検索に基づく最適化法を含むタスクのベースラインについて検討した。
コードとデータはhttps://github.com/princeton-vl/packitで入手できる。
関連論文リスト
- ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition [8.654140442734354]
不慣れな物体のタスク指向の把握は、動的家庭環境におけるロボットにとって必要なスキルである。
本稿では,対象物体の幾何学的分解を簡単な凸形状に生かしたゼロショットタスク指向の把握手法を提案する。
このアプローチでは、ゼロショットタスク指向の把握を容易にするために、最小限の必須情報(オブジェクト名と意図したタスク)を使用します。
論文 参考訳(メタデータ) (2024-03-26T19:26:53Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
本稿では,様々な幾何学的に異なる実世界の物体の対話的把握を学習する強化学習フレームワークを提案する。
学習したインタラクティブなポリシーのビデオはhttps://maltemosbach.org/io/geometry_aware_grasping_policiesで公開されている。
論文 参考訳(メタデータ) (2022-11-20T11:47:33Z) - Planning Irregular Object Packing via Hierarchical Reinforcement
Learning [85.64313062912491]
本研究では,不規則物体のパッケージングシーケンスと配置を計画するための階層的強化学習手法を提案する。
我々の手法は、不規則なオブジェクトの最先端のパッキング方法よりも、より少ない時間でより多くのオブジェクトをパックできることを示す。
論文 参考訳(メタデータ) (2022-11-17T07:16:37Z) - Policy Architectures for Compositional Generalization in Control [71.61675703776628]
本稿では,タスクにおけるエンティティベースの構成構造をモデル化するためのフレームワークを提案する。
私たちのポリシーは柔軟で、アクションプリミティブを必要とせずにエンドツーエンドでトレーニングできます。
論文 参考訳(メタデータ) (2022-03-10T06:44:24Z) - Predicting Stable Configurations for Semantic Placement of Novel Objects [37.18437299513799]
我々のゴールは、新しい環境における学習された意味的関係に従って、ロボットが未確認の物体を配置できるようにすることである。
我々は、未知のオブジェクトのセマンティック配置のための計画アルゴリズムと密に統合するために、モデルとトレーニングをゼロから構築する。
提案手法は,RGB-Dセンシングのみによる形状の異なるシーンにおける未知物体のセマンティック・アレンジメントのための動作計画を可能にする。
論文 参考訳(メタデータ) (2021-08-26T23:05:05Z) - Long-Horizon Manipulation of Unknown Objects via Task and Motion
Planning with Estimated Affordances [26.082034134908785]
操作可能なオブジェクトの集合に関する事前知識がなくても,タスク・アンド・モーション・プランナが知的行動の計画に利用できることを示す。
この戦略により、単一のシステムが様々な実世界のマルチステップ操作タスクを実行できることを実証する。
論文 参考訳(メタデータ) (2021-08-09T16:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。